Abstract

Deep neural networks are known to be vulnerable to security risks due to the inherent transferable nature of adversarial examples. Despite the success of recent generative model-based attacks demonstrating strong transferability, it still remains a challenge to design an efficient attack strategy in a real-world strict black-box setting, where both the target domain and model architectures are unknown. In this paper, we seek to explore a feature contrastive approach in the frequency domain to generate adversarial examples that are robust in both cross-domain and cross-model settings. With that goal in mind, we propose two modules that are only employed during the training phase: a Frequency-Aware Domain Randomization (FADR) module to randomize domain-variant low- and high-range frequency components and a Frequency-Augmented Contrastive Learning (FACL) module to effectively separate domain-invariant mid-frequency features of clean and perturbed image. We demonstrate strong transferability of our generated adversarial perturbations through extensive cross-domain and cross-model experiments, while keeping the inference time complexity.

1. Introduction

Deep neural networks have brought forth tremendous improvements in visual recognition tasks. However, the inherent transferable nature of adversarial examples still exposes the security vulnerability to malicious attackers targeting such susceptible classifiers, causing serious threats and undesirable outcomes in real-world applications. The majority of current attack methods can be primarily classified into two main categories: iterative or optimization-based approaches, and generative model-based approaches. Over the past years, iterative attack methods [8, 21, 20, 4, 17, 5, 37, 18, 25] have been the standard attack protocol for its simplicity and effectiveness. However, this iterative approach is frequently constrained by inefficient time complexity and the potential risk of over-fitting to the training data and models. Moreover, it has shown limited applicability in practical situations due to the low transferability to unknown models and domains.

In this light, generative attacks [27, 26, 29, 24, 41] have recently gained attention, demonstrating the high transferability across unknown models and domains. Moreover, generator-based attacks yield lower time complexity than iterative or optimization-based methods in the inference stage, which is also a crucial part for real-world attacks. While the current chain of generative attack methods [27, 26, 24, 29, 41, 36] are time-efficient and effective against various black-box settings, we remark that their methods do not actively leverage domain-related characteristics for more transferable attacks.

In that sense, our work is inspired by frequency domain manipulations [40, 34, 35] in domain adaptation (DA) [39] and generalization (DG) [13, 38], demonstrating the superior generalization capabilities of the trained model. As we target transferable attack on unknown target domains and victim models to boost the transferability in a similar set-
ting, we seek to exploit domain-related characteristics from simple yet effective frequency manipulations.

Several recent studies have focused on frequency-based adversarial attacks to manipulate adversarial examples, aimed at deeper understanding of their dataset dependency [22], adversarial robustness [6], and the security vulnerability [7]. With a slightly different motive, SSAH [19] aims to improve the perceptual quality, whereas [9] designs low-frequency perturbations to enhance the efficiency of black-box queries. Although low-frequency perturbations are efficient, they are known to provide less effective transfer between models [30]. As such, we delve deeper into frequency-driven approaches that effectively enhance the transferability of adversarial examples, especially crafted in a generative framework.

To this end, we propose a novel generative attack method, FACL-Attack, to facilitate transferable attacks across various domains and models from the frequency domain perspective. In our training, we introduce frequency-aware domain randomization and feature contrastive learning, explicitly leveraging band-specific characteristics of image attributes such as color, shape, and texture, as shown in Figure 1. We highlight our contributions as follows:

- We propose two modules to boost the adversarial transferability, FADR and FACL, in which FADR randomizes domain-variant data components while FACL contrasts domain-invariant feature pairs in the frequency domain.
- We achieve the state-of-the-art attack transferability across various domains and model architectures, demonstrating the effectiveness of our method.
- Our plug-and-play modules can be easily integrated into existing generative attack frameworks, further boosting the transferability while keeping the time complexity.

2. Method

Overview of FACL-Attack. Our method aims to train a robust perturbation generator that yields effective adversarial examples given arbitrary images from black-box domains to induce the unknown victim model to output misclassification. It consists of two key modular operations in the frequency domain, each applied to the input image data and features extracted from the surrogate model only during the training stage, as illustrated in Figure 2.

2.1. Frequency-Aware Domain Randomization

This subsection describes our FADR module designed to boost the robustness of perturbation generator $G_\theta(\cdot)$ against arbitrary domain shifts in practical real-world scenarios. Inspired by recent works [13, 38], we decompose the input training images into multiple-range FCs by leveraging DCT, and apply random masked filtering operation on domain-specific image attributes. While FSDR [13] and FACT [38] each employs histogram matching and Fourier-based amplitude mix-up, our FADR module explicitly manipulates the DCT coefficients to diversify input images, aligning with a recent work [16] that narrows the gap between the surrogate model and possible victim models via spectrum transformation. We remark that our approach applies domain randomization exclusively to domain-specific FCs, whereas the existing work [16] applies spectral transformation over the whole frequency bands.

In converting the input images into the frequency domain, we apply DCT to each channel separately. We then apply random masked filtering to diversify the input images for boosting the cross-domain transferability. Our spectral transformation operation $T_{\text{FADR}}(\cdot)$ for source images \mathbf{x}_s can be mathematically expressed as follows:

$$T_{\text{FADR}}(\mathbf{x}_s) = \phi^{-1}\left((\phi(\mathbf{x}_s + \xi) \odot M) \right), \quad (1)$$

with the mask M defined as follows:

$$M = \begin{cases} U(1 - \rho, 1 + \rho), & \text{if } f < f_l, \\ 1, & \text{if } f_l \leq f < f_h, \\ U(1 - \rho, 1 + \rho), & \text{if } f \geq f_h, \end{cases} \quad (2)$$

where \odot, ϕ, ϕ^{-1} denote Hadamard product, DCT, and inverse DCT (IDCT) operation, respectively. The random noise $\xi \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ is sampled from a Gaussian distribution, and the mask values are randomly sampled from Uniform distribution, denoted as U. For the random mask matrix M which has the same dimension with the DCT output, we assign its matrix component values as defined in Equation 2, where we set the low and high thresholds as f_l and f_h, respectively, to distinguish low-, mid-, and high-frequency bands. Note that we can parameterize our FADR module with hyperparameters ρ and σ.

The augmented image output from FADR is then fed as input to the generator $\hat{G}_\theta(\cdot)$ to yield the adversarial image $\mathbf{x}'_s = P(\hat{G}_\theta(T_{\text{FADR}}(\mathbf{x}_s)))$, after the perturbation projection within the pre-defined budget of $\|\delta\|_\infty \leq \epsilon$.

2.2. Frequency-Augmented Contrastive Learning

Recent works on multi-object scene attacks have highlighted the importance of feature-level contrast for transferable generative attacks. In a similar approach to their ideas of exploiting local patch differences [2] or CLIP features [1], our FACL module seeks to apply feature contrast specifically in the domain-agnostic mid-frequency range for improving the generalization capability of the trained perturbation generator $G_\theta(\cdot)$.

Spectral decomposition. According to the training pipeline of our FACL-Attack in Figure 2, the generated ad-
versarial image x'_s undergoes spectral decomposition before feature extraction from the surrogate model. This process is carried out by using a band-pass filter M_{bp} and a band-reject filter M_{br}, to decompose the surrogate model inputs into mid- and low- and high-band FCs, respectively. The spectral decomposition operator is defined as follows:

$$M_{bp} = \begin{cases} 1, & \text{if } f_l \leq f < f_h, \\ 0, & \text{otherwise}, \end{cases}$$

(3)

where M_{br} is the opposite of M_{bp}, holding its values in reverse. Then the spectrally decomposed features from the surrogate model f are defined as:

$$z_{\text{band}} = f_k\left(\phi^{-1}\left(\phi(x_{\text{input}}) \odot M_{\text{band}}\right)\right),$$

(4)

where M_{band} is set to either M_{bp} or M_{br}, and $f_k(\cdot)$ denotes the k-th layer of f. Given x_s and x'_s as input, we finally obtain two pairs of band-specific frequency-augmented features to contrast, i.e., (z_m, z'_m) for repelling, and (z_{lh}, z'_{lh}) for attracting each other.

Loss function. The baseline loss L_{orig} for attacking the surrogate model via contrasting clean and adversarial feature pairs is defined as follows:

$$L_{\text{orig}} = \text{sim}(f_k(x_s), f_k(x'_s)), $$

(5)

where sim refers to the standard cosine similarity metric. To boost the attack transferability, our FACL module effectively exploits the spectrally decomposed feature pairs in our proposed FACL loss function defined as follows:

$$L_{\text{FACL}} = \text{sim}(z_m, z'_m) - \text{sim}(z_{lh}, z'_{lh}), $$

(6)

where the goal of L_{FACL} is to reinforce the effectiveness of domain-agnostic mid-band feature contrast (z_m, z'_m), while minimizing the importance of domain-specific low- and high-band feature difference (z_{lh}, z'_{lh}). In this approach, our L_{FACL} facilitates the push-pull action among the band-specific feature pairs, further guiding the perturbation generation towards more robust regime.

Final learning objective. We train our perturbation generator by minimizing the total loss function as follows:

$$\min_{\theta} (\lambda_{\text{orig}} \cdot L_{\text{orig}} + \lambda_{\text{FACL}} \cdot L_{\text{FACL}}),$$

(7)

where λ_{orig} and λ_{FACL} are loss coefficients. The objective guides our generator $G(\cdot)$ to generate more robust perturbations to domain shifts as well as model variances.

3. Experiments

Cross-domain transferability. We compare our method with the state-of-the-art generative attacks on various domains such as CUB-200-2011 [33], Stanford Cars [15], and FGVC Aircraft [23]. Our perturbation generator is trained by only leveraging ImageNet-1K [28] and pre-trained surrogate model (i.e., VGG-16 [31]). Then, it is evaluated on black-box victim models trained with DCL framework [3] using different backbones (i.e., Res-50 [10], SENet154 [11], SE-Res101 [11]). We closely follow recent works [26, 29, 41, 1] for implementation of perturbation generator for fair comparison. We train with an Adam [14] optimizer ($\beta_1 = 0.5, \beta_2 = 0.999$) with a learning rate of 2×10^{-4}, and a batch size of 16. For FADR hyperparameters, we follow the insights from [13] to set the low and high frequency thresholds to 7 and 112, respectively, with $\rho = 0.01$ and $\sigma = 8$ for spectral transformation.

As shown in Table 1, our FACL-Attack outperforms on most cross-domain benchmarks, among which are also
Cross-domain evaluation results

The perturbation generator is trained on ImageNet-1K with VGG-16 as the surrogate model and evaluated on black-box domains with black-box models. We compare the top-1 classification accuracy after attacks with the perturbation budget of $l_\infty \leq 10$ (the lower, the better). **Best** and second best.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>87.35 86.81 86.56 94.35 93.36 92.97 92.23 92.08 91.90 90.85</td>
<td>87.35 86.81 86.56 94.35 93.36 92.97 92.23 92.08 91.90 90.85</td>
<td>87.35 86.81 86.56 94.35 93.36 92.97 92.23 92.08 91.90 90.85</td>
<td></td>
</tr>
<tr>
<td>GAP [27]</td>
<td>68.85 74.11 72.73 85.64 84.34 87.84 81.40 81.88 92.08 91.90</td>
<td>68.85 74.11 72.73 85.64 84.34 87.84 81.40 81.88 92.08 91.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDA [26]</td>
<td>69.69 62.51 71.00 75.94 72.45 84.64 71.53 58.33 63.39 69.94</td>
<td>69.69 62.51 71.00 75.94 72.45 84.64 71.53 58.33 63.39 69.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTP [29]</td>
<td>30.86 52.50 62.86 34.54 65.53 73.88 15.90 52.01 48.51 44.05</td>
<td>30.86 52.50 62.86 34.54 65.53 73.88 15.90 52.01 48.51 44.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIA [41]</td>
<td>32.74 52.99 58.04 39.61 69.90 70.17 28.92 60.31 46.92 51.07</td>
<td>32.74 52.99 58.04 39.61 69.90 70.17 28.92 60.31 46.92 51.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACL-Attack (Ours)</td>
<td>24.74 44.06 53.75 26.58 65.71 61.40 19.72 52.01 48.51 44.05</td>
<td>24.74 44.06 53.75 26.58 65.71 61.40 19.72 52.01 48.51 44.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Cross-domain evaluation results.

Cross-model evaluation results

The perturbation generator is trained on ImageNet-1K with VGG-16 as the surrogate model and evaluated on black-box models including white-box model (*i.e.*, VGG-16). We compare the top-1 classification accuracy after attacks with the perturbation budget of $l_\infty \leq 10$ (the lower, the better). **Best** and second best.

<table>
<thead>
<tr>
<th>Method</th>
<th>Venue</th>
<th>VGG-16</th>
<th>VGG-19</th>
<th>Res-50</th>
<th>Res-152</th>
<th>Dense-121</th>
<th>Dense-169</th>
<th>Inc-v3</th>
<th>AVG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td></td>
<td>70.14</td>
<td>70.95</td>
<td>74.61</td>
<td>77.34</td>
<td>74.22</td>
<td>75.75</td>
<td>76.19</td>
<td>74.17</td>
</tr>
<tr>
<td>GAP [27]</td>
<td>CVPR’18</td>
<td>23.63</td>
<td>28.56</td>
<td>57.87</td>
<td>65.50</td>
<td>57.94</td>
<td>61.37</td>
<td>63.30</td>
<td>55.76</td>
</tr>
<tr>
<td>CDA [26]</td>
<td>NeurIPS’19</td>
<td>0.40</td>
<td>0.77</td>
<td>36.27</td>
<td>51.05</td>
<td>38.89</td>
<td>42.67</td>
<td>32.01</td>
<td>32.01</td>
</tr>
<tr>
<td>LTP [29]</td>
<td>NeurIPS’21</td>
<td>1.61</td>
<td>2.74</td>
<td>21.70</td>
<td>39.88</td>
<td>23.42</td>
<td>25.46</td>
<td>41.27</td>
<td>22.30</td>
</tr>
<tr>
<td>BIA [41]</td>
<td>ICLR’22</td>
<td>1.55</td>
<td>3.61</td>
<td>25.36</td>
<td>42.98</td>
<td>26.97</td>
<td>32.35</td>
<td>41.20</td>
<td>24.86</td>
</tr>
<tr>
<td>FACL-Attack (Ours)</td>
<td></td>
<td>-</td>
<td>1.45</td>
<td>2.92</td>
<td>19.72</td>
<td>36.61</td>
<td>29.97</td>
<td>25.61</td>
<td>29.97</td>
</tr>
</tbody>
</table>

Table 2: Cross-model evaluation results.

Qualitative results

Clean images (*row 1*), unbounded adversarial images (*row 2*), and bounded adversarial images (*row 3*; actual inputs to the classifier) are shown for various domains. The ground truth and each mispredicted class label are shown on the *top* and *bottom*.

Figure 3: Qualitative results.

Cross-model transferability. We further investigated on the black-box model scenario in a controlled white-box domain (*i.e.*, ImageNet-1K). The generator is trained against a surrogate model (*i.e.*, VGG-16) and evaluated on various victim models which include VGG-16 (white-box), VGG-19, Res-50, Res-152 [10], Dense-121, Dense-169 [12], and Inc-v3 [32]. As shown in Table 2, ours also outperforms on most benchmarks where they seem to partially overfit to the white-box model (*i.e.*, VGG-16). We posit that the frequency-augmented feature learning could help the perturbation generator craft more robust perturbations, which exhibit better generalization capability to unknown feature space. This aligns with a recent finding [16] that spectral data randomization contributes to enhance the transferability via simulating diverse victim models.

4. Conclusion

In this paper, we proposed a novel generator-based transferable attack framework called FACL-Attack, leveraging spectral transformation and feature contrast in the frequency domain. Our method targets spectral randomization on domain-specific image components, and domain-agnostic feature contrast for training a more robust perturbation generator. Our extensive evaluation results validate the effectiveness in practical black-box scenarios with domain shifts and model variances. It can also be easily integrated into existing attack frameworks, further boosting the transferability while keeping the inference time complexity.
References

