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Abstract

Deep neural networks are known to be vulnerable to se-
curity risks due to the inherent transferable nature of ad-
versarial examples. Despite the success of recent generative
model-based attacks demonstrating strong transferability, it
still remains a challenge to design an efficient attack strat-
egy in a real-world strict black-box setting, where both the
target domain and model architectures are unknown. In this
paper, we seek to explore a feature contrastive approach
in the frequency domain to generate adversarial examples
that are robust in both cross-domain and cross-model set-
tings. With that goal in mind, we propose two modules that
are only employed during the training phase: a Frequency-
Aware Domain Randomization (FADR) module to random-
ize domain-variant low- and high-range frequency compo-
nents and a Frequency-Augmented Contrastive Learning
(FACL) module to effectively separate domain-invariant
mid-frequency features of clean and perturbed image. We
demonstrate strong transferability of our generated adver-
sarial perturbations through extensive cross-domain and
cross-model experiments, while keeping the inference time
complexity.

1. Introduction
Deep neural networks have brought forth tremendous

improvements in visual recognition tasks. However, the in-
herent transferable nature of adversarial examples still ex-
poses the security vulnerability to malicious attackers tar-
geting such susceptible classifiers, causing serious threats
and undesirable outcomes in real-world applications. The
majority of current attack methods can be primarily clas-
sified into two main categories: iterative or optimization-
based approaches, and generative model-based approaches.
Over the past years, iterative attack methods [8, 21, 20, 4,
17, 5, 37, 18, 25] have been the standard attack protocol
for its simplicity and effectiveness. However, this iterative
approach is frequently constrained by inefficient time com-
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Figure 1: To boost the transferability of adversarial ex-
amples, we exploit band-specific characteristics of natural
images in the frequency domain. Our method randomizes
domain-variant low- and high-band frequency components
(FCs) in data space, and contrasts domain-invariant mid-
range clean and perturbed feature pairs in feature space.

plexity and the potential risk of over-fitting to the training
data and models. Moreover, it has shown limited applica-
bility in practical situations due to the low transferability to
unknown models and domains.

In this light, generative attacks [27, 26, 29, 24, 41] have
recently gained attention, demonstrating the high trans-
ferability across unknown models and domains. More-
over, generator-based attacks yield lower time complexity
than iterative or optimization-based methods in the infer-
ence stage, which is also a crucial part for real-world at-
tacks. While the current chain of generative attack meth-
ods [27, 26, 24, 29, 41, 36] are time-efficient and effec-
tive against various black-box settings, we remark that their
methods do not actively leverage domain-related character-
istics for more transferable attacks.

In that sense, our work is inspired by frequency domain
manipulations [40, 34, 35] in domain adaptation (DA) [39]
and generalization (DG) [13, 38], demonstrating the supe-
rior generalization capabilities of the trained model. As we
target transferable attack on unknown target domains and
victim models to boost the transferability in a similar set-



ting, we seek to exploit domain-related characteristics from
simple yet effective frequency manipulations.

Several recent studies have focused on frequency-based
adversarial attacks to manipulate adversarial examples,
aimed at deeper understanding of their dataset depen-
dency [22], adversarial robustness [6], and the security vul-
nerability [7]. With a slightly different motive, SSAH [19]
aims to improve the perceptual quality, whereas [9] designs
low-frequency perturbations to enhance the efficiency of
black-box queries. Although low-frequency perturbations
are efficient, they are known to provide less effective trans-
fer between models [30]. As such, we delve deeper into
frequency-driven approaches that effectively enhance the
transferability of adversarial examples, especially crafted in
a generative framework.

To this end, we propose a novel generative attack
method, FACL-Attack, to facilitate transferable attacks
across various domains and models from the frequency do-
main perspective. In our training, we introduce frequency-
aware domain randomization and feature contrastive learn-
ing, explicitly leveraging band-specific characteristics of
image attributes such as color, shape, and texture, as shown
in Figure 1. We highlight our contributions as follows:

• We propose two modules to boost the adversarial
transferability, FADR and FACL, in which FADR ran-
domizes domain-variant data components while FACL
contrasts domain-invariant feature pairs in the fre-
quency domain.

• We achieve the state-of-the-art attack transferabil-
ity across various domains and model architectures,
demonstrating the effectiveness of our method.

• Our plug-and-play modules can be easily integrated
into existing generative attack frameworks, further
boosting the transferability while keeping the time
complexity.

2. Method
Overview of FACL-Attack. Our method aims to train
a robust perturbation generator that yields effective adver-
sarial examples given arbitrary images from black-box do-
mains to induce the unknown victim model to output mis-
classification. It consists of two key modular operations in
the frequency domain, each applied to the input image data
and features extracted from the surrogate model only during
the training stage, as illustrated in Figure 2.

2.1. Frequency-Aware Domain Randomization

This subsection describes our FADR module designed to
boost the robustness of perturbation generator Gθ(·) against
arbitrary domain shifts in practical real-world scenarios. In-
spired by recent works [13, 38], we decompose the input
training images into multiple-range FCs by leveraging DCT,

and apply random masked filtering operation on domain-
specific image attributes. While FSDR [13] and FACT [38]
each employs histogram matching and Fourier-based ampli-
tude mix-up, our FADR module explicitly manipulates the
DCT coefficients to diversify input images, aligning with a
recent work [16] that narrows the gap between the surro-
gate model and possible victim models via spectrum trans-
formation. We remark that our approach applies domain
randomization exclusively to domain-specific FCs, whereas
the existing work [16] applies spectral transformation over
the whole frequency bands.

In converting the input images into the frequency do-
main, we apply DCT to each channel separately. We then
apply random masked filtering to diversify the input images
for boosting the cross-domain transferability. Our spectral
transformation operation TFADR(·) for source images x s

can be mathematically expressed as follows:

TFADR(xs) = ϕ−1
(
(ϕ(xs + ξ)⊙M

)
, (1)

with the mask M defined as follows:

M =


U(1− ρ, 1 + ρ), if f < fl,

1, if fl ≤ f < fh,

U(1− ρ, 1 + ρ), if f ≥ fh,

(2)

where ⊙, ϕ, ϕ−1 denote Hadamard product, DCT, and in-
verse DCT (IDCT) operation, respectively. The random
noise ξ ∼ N (0, σ2I) is sampled from a Gaussian distri-
bution, and the mask values are randomly sampled from
Uniform distribution, denoted as U . For the random mask
matrix M which has same dimension with the DCT out-
put, we assign its matrix component values as defined in
Equation 2, where we set the low and high thresholds as fl,
and fh, respectively, to distinguish low-, mid-, and high-
frequency bands. Note that we can parameterize our FADR
module with hyperparameters ρ and σ.

The augmented image output from FADR is then fed as
input to the generator Gθ(·) to yield the adversarial image
x ′
s = P (Gθ(TFADR(xs))), after the perturbation projection

within the pre-defined budget of ∥δ∥∞ ≤ ϵ.

2.2. Frequency-Augmented Contrastive Learning

Recent works on multi-object scene attacks have high-
lighted the importance of feature-level contrast for trans-
ferable generative attacks. In a similar approach to their
ideas of exploiting local patch differences [2] or CLIP fea-
tures [1], our FACL module seeks to apply feature contrast
specifically in the domain-agnostic mid-frequency range for
improving the generalization capability of the trained per-
turbation generator Gθ(·).
Spectral decomposition. According to the training
pipeline of our FACL-Attack in Figure 2, the generated ad-
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Figure 2: Overview of FACL-Attack. From the clean input image, our FADR module outputs the augmented image after
spectral transformation, which is targeted to randomize only the domain-variant low/high FCs. The perturbation generator
Gθ(·) then produces the l∞-budget bounded adversarial image x ′

s with perturbation projector P (·) from the randomized
image. The resulting clean and adversarial image pairs are decomposed into mid-band (domain-agnostic) and low/high-band
(domain-specific) FCs, whose features fk(·) extracted from the k-th layer of the surrogate model are contrasted in our FACL
module to boost the transferability. The adversarial image x ′

s is colorized only for visualization.

versarial image x ′
s undergoes spectral decomposition be-

fore feature extraction from the surrogate model. This pro-
cess is carried out by using a band-pass filter M bp and a
band-reject filter M br, to decompose the surrogate model
inputs into mid- and low- and high-band FCs, respectively.
The spectral decomposition operator is defined as follows:

M bp =

{
1, if fl ≤ f < fh,

0, otherwise,
(3)

where M br is the opposite of M bp, holding its values in
reverse. Then the spectrally decomposed features from the
surrogate model f are defined as:

zband = fk

(
ϕ−1

(
ϕ(x input)⊙M band

))
, (4)

where M band is set to either M bp or M br, and fk(·)
denotes the k-th layer of f . Given x s and x ′

s as in-
put, we finally obtain two pairs of band-specific frequency-
augmented features to contrast, i.e., (zm, z′m) for repelling,
and (zlh, z

′
lh) for attracting each other.

Loss function. The baseline loss Lorig for attacking the
surrogate model via contrasting clean and adversarial fea-
ture pairs is defined as follows:

Lorig = sim(fk(x s), fk(x
′
s)), (5)

where sim refers to the standard cosine similarity metric.
To boost the attack transferability, our FACL module effec-
tively exploits the spectrally decomposed feature pairs in
our proposed FACL loss function defined as follows:

LFACL = sim(zm, z′m)− sim(zlh, z
′
lh), (6)

where the goal of LFACL is to reinforce the effectiveness of
domain-agnostic mid-band feature contrast (zm, z′m), while

minimizing the importance of domain-specific low- and
high-band feature difference (zlh, z′lh). In this approach,
our LFACL facilitates the push-pull action among the band-
specific feature pairs, further guiding the perturbation gen-
eration towards more robust regime.
Final learning objective. We train our perturbation gen-
erator by minimizing the total loss function as follows:

min
θ

(λorig · Lorig + λFACL · LFACL), (7)

where λorig and λFACL are loss coefficients. The objective
guides our generator Gθ(·) to generate more robust pertur-
bations to domain shifts as well as model variances.

3. Experiments

Cross-domain transferability. We compare our method
with the state-of-the-art generative attacks on various do-
mains such as CUB-200-2011 [33], Stanford Cars [15],
and FGVC Aircraft [23]. Our perturbation generator is
trained by only leveraging ImageNet-1K [28] and pre-
trained surrogate model (i.e., VGG-16 [31]). Then, it is
evaluated on black-box victim models trained with DCL
framework [3] using different backbones (i.e., Res-50 [10],
SENet154 [11], SE-Res101 [11]). We closely follow recent
works [26, 29, 41, 1] for implementation of perturbation
generator for fair comparison. We train with an Adam [14]
optimizer (β1 = 0.5, β2 = 0.999) with a learning rate of
2 × 10−4, and a batch size of 16. For FADR hyperparam-
eters, we follow the insights from [13] to set the low and
high frequency thresholds to 7 and 112, respectively, with
ρ = 0.01 and σ = 8 for spectral transformation.

As shown in Table 1, our FACL-Attack outperforms
on most cross-domain benchmarks, among which are also



Method CUB-200-2011 Stanford Cars FGVC Aircraft AVG.
Res-50 SENet154 SE-Res101 Res-50 SENet154 SE-Res101 Res-50 SENet154 SE-Res101

Clean 87.35 86.81 86.56 94.35 93.36 92.97 92.23 92.08 91.90 90.85

GAP [27] 68.85 74.11 72.73 85.64 84.34 87.84 81.40 81.88 76.90 79.30
CDA [26] 69.69 62.51 71.00 75.94 72.45 84.64 71.53 58.33 63.39 69.94
LTP [29] 30.86 52.50 62.86 34.54 65.53 73.88 15.90 60.37 52.75 49.91
BIA [41] 32.74 52.99 58.04 39.61 69.90 70.17 28.92 60.31 46.92 51.07

FACL-Attack (Ours) 24.74 44.06 53.75 26.58 65.71 61.40 19.72 52.01 48.51 44.05

Table 1: Cross-domain evaluation results. The perturbation generator is trained on ImageNet-1K with VGG-16 as the
surrogate model and evaluated on black-box domains with black-box models. We compare the top-1 classification accuracy
after attacks with the perturbation budget of l∞ ≤ 10 (the lower, the better). Best and second best.

Method Venue VGG-16 VGG-19 Res-50 Res-152 Dense-121 Dense-169 Inc-v3 AVG.

Clean - 70.14 70.95 74.61 77.34 74.22 75.75 76.19 74.17

GAP [27] CVPR’18 23.63 28.56 57.87 65.50 57.94 61.37 63.30 55.76
CDA [26] NeurIPS’19 0.40 0.77 36.27 51.05 38.89 42.67 54.02 32.01
LTP [29] NeurIPS’21 1.61 2.74 21.70 39.88 23.42 25.46 41.27 22.30
BIA [41] ICLR’22 1.55 3.61 25.36 42.98 26.97 32.35 41.20 24.86

FACL-Attack (Ours) - 1.45 2.92 19.72 36.61 21.34 25.61 29.97 19.66

Table 2: Cross-model evaluation results. The perturbation generator is trained on ImageNet-1K with VGG-16 as the
surrogate model and evaluated on black-box models including white-box model (i.e., VGG-16). We compare the top-1
classification accuracy after attacks with the perturbation budget of l∞ ≤ 10 (the lower, the better). Best and second best.

Figure 3: Qualitative results. Clean images (row 1), un-
bounded adversarial images (row 2), and bounded adver-
sarial images (row 3; actual inputs to the classifier) are
shown for various domains. The ground truth and each mis-
predicted class label are shown on the top and bottom.

cross-model, by significant margins. We posit that the re-
markable generalization ability of FACL-Attack owes to
the synergy between our two proposed modules that effec-
tively guide feature-level separation in the domain-agnostic
mid-frequency band (i.e., FACL), complemented by data-
level randomization only applied to the domain-specific fre-
quency components (i.e., FADR). As shown in Figure 3,
FACL-Attack can craft effective and high-quality adversar-
ial images with imperceptible perturbations.

Cross-model transferability. We further investigated on
the black-box model scenario in a controlled white-box do-
main (i.e., ImageNet-1K). The generator is trained against
a surrogate model (i.e., VGG-16) and evaluated on various
victim models which include VGG-16 (white-box), VGG-
19, Res-50, Res-152 [10], Dense-121, Dense-169 [12], and
Inc-v3 [32]. As shown in Table 2, ours also outperforms
on most benchmarks where they seem to partially overfit
to the white-box model (i.e., VGG-16). We posit that the
frequency-augmented feature learning could help the per-
turbation generator craft more robust perturbations, which
exhibit better generalization capability to unknown feature
space. This aligns with a recent finding [16] that spectral
data randomization contributes to enhance the transferabil-
ity via simulating diverse victim models.

4. Conclusion
In this paper, we proposed a novel generator-based trans-

ferable attack framework called FACL-Attack, leveraging
spectral transformation and feature contrast in the frequency
domain. Our method targets spectral randomization on
domain-specific image components, and domain-agnostic
feature contrast for training a more robust perturbation gen-
erator. Our extensive evaluation results validate the effec-
tiveness in practical black-box scenarios with domain shifts
and model variances. It can also be easily integrated into
existing attack frameworks, further boosting the transfer-
ability while keeping the inference time complexity.
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