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Abstract

Most existing evaluations of DNN robustness have been
done on images sampled from the same distribution on
which the model was trained. However, in the real world,
DNNs may be deployed in dynamic environments that ex-
hibit significant distribution shifts. In this work, we take a
first step towards thoroughly investigating the interplay be-
tween empirical and certified adversarial robustness on one
hand and domain generalization on another. To do so, we
train robust models on multiple domains and evaluate their
accuracy and robustness on an unseen domain. We observe
that: (1) both empirical and certified robustness general-
ize to unseen domains, and (2) the level of generalizability
does not correlate well with input visual similarity, mea-
sured by the FID between source and target domains. Our
study sheds light on the importance of evaluating DNNs un-
der real-world distribution shifts.

1. Introduction

Deep Neural Networks (DNNs) are vulnerable to small
and carefully designed perturbations, known as adversarial
attacks [21, 9]. That is, a DNN fθ : Rd → P(Y) can pro-
duce two different predictions for the inputs x ∈ Rd and
x + δ, although both x and x + δ are perceptually indis-
tinguishable. Furthermore, DNNs are found to be brittle
against simple semantic transformations such as rotation,
translation, and scaling [5].

These observations raise concerns regarding the deploy-
ability of DNNs in security-critical applications, such as
self-driving and medical diagnosis [18, 6, 15]. This brittle-
ness motivated efforts to build models that are not only ac-
curate but also robust [10]. Building robust models is usu-
ally achieved either (i) empirically, where the DNN train-
ing routine is changed to include such malicious adversarial
examples in the training set [16], or (ii) certifiably, where
theoretical guarantees are given about the robustness of a
DNN in a region around a given input x [13]. While recent
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Figure 1. Does a robust model trained in a (source) domain
maintain its robustness when deployed in another (target) do-
main? We investigate the generalizability of empirical and certi-
fied robustness to various unseen domains.

work on adversarial robustness has made significant strides
in developing accurate and robust models, most methods
are only evaluated on in-distribution data. This means that
the training and testing datasets are assumed to be indepen-
dently and identically distributed (IID). However, this IID
assumption rarely holds in practice, as data in the real world
can be sampled from various distributions with significant
domain shifts. For example, a medical image classifier may
be trained on data collected from one hospital, but later
deployed in a different hospital [2]. Unfortunately, DNNs
struggle to generalize to out-of-domain data [7, 8], even in
the absence of adversarial examples. This lack of gener-
alization has led the research community to invest in the
problem of Domain Generalization (DG). The aim of DG is
to learn invariant representations from diverse distributions
of data, denoted as source domains, such that these repre-
sentations generalize to an unseen distribution, known as
the target domain [11]. This setup mimics the unexpected
nature of real-world distribution shifts, where models can
be regularly exposed to novel domains, and fine-tuning on
all these domains becomes impractical. While there has
been considerable effort in improving the generalizability
of DNNs [22, 20, 17, 25, 19], the generalizability of adver-
sarial robustness to unseen domains remains unexplored.

Our work examines the interplay between domain gener-
alization and adversarial robustness through comprehensive
experiments on five standard DG benchmarks provided by
DomainBed [11] and WILDS [12]. We investigate empiri-
cal and certified robustness against input perturbations and
spatial deformations. We first investigate the generalizabil-
ity of empirical robustness, which a DNN obtains by em-
ploying the popular adversarial training method [16] on the



source data. We then inspect the generalizability of certified
robustness against input perturbations and parametric de-
formations by employing Randomized Smoothing (RS) [3]
and DeformRS [1]. Our analysis of the generalizability of
adversarial robustness to unseen domains leads to the fol-
lowing contributions:

1. We contrast the behavior of robustness under both
transfer learning and domain generalization. Unlike
transfer learning, domain generalization does not nec-
essarily improve through robust training.

2. We empirically show that visual similarity between the
source and target domains does not correlate well with
the level of generalizability to the target domain.

3. We show that empirical and certified robustness gener-
alize to unseen domains in different setups.

2. Background on Domain Generalization
Domain Generalization Setup. Given an input space X
and a label space Y , one can define a joint distribution PXY

over X and Y . A domain, or distribution, is a collection of
samples drawn from PXY .

In multi-source domain generalization, there are N
source domains of varying sizes {Dn}Nn=1 where for each
n, the domain is defined by Dn = {(xj , yj)}|Dn|

j=1 ∼ P(n)
XY .

We define the training set S by the union of the N source
domains S =

⋃N
n=1 Dn, and we assume the existence of

some unseen target domain DN+1 = {(xj , yj)}|DN+1|
j=1 ∼

P(N+1)
XY . We enforce that P(k)

XY ̸= P(n)
XY for k ̸= n, k, n ∈

{1, . . . , N + 1}, which means that the target domain is dis-
tinct from the source domains, which are, in turn, distinct
from each other. The aim of DG is to use the source do-
mains S to learn a mapping f : X → Y that minimizes the
error on the unseen target domain. Since the model is not
allowed to sample the target domain during training, most
methods use the empirical risk of the source datasets as a
proxy for the true target risk. The supervised average risk
(E) is given by:

E =
1

N

N∑
n=1

1

|Sn|

|Sn|∑
i=1

[L(fθ(x), y)] (1)

with (x, y) ∼ S. In practice, we define a fixed held-out val-
idation set Sv ⊂ S. The average risk on this source valida-
tion set is used to select the best model, which is evaluated
on the target domain without any fine-tuning steps. Section
3 (and 4) investigates the generalizability of empirical (and
certified) robustness to diverse target domains.

3. Empirical Robustness and DG
In this section, we study the generalizability of DNNs

trained with empirical robustness methods.

Adversarial Training as Augmentation. Adversarial
Training (AT) [16] trains the classifier on adversarial exam-
ples rather than clean samples. In particular, AT obtains the
network parameters θ∗ by solving the following optimiza-
tion problem:

min
θ

E(x,y)∼D

[
max

δ,∥δ∥p≤ϵ
L(fθ(x+ δ), y)

]
, (2)

where D is a data distribution. In general, the inner max-
imization problem is solved through K steps of Projected
Gradient Descent (PGD) [16]. While conducting adversar-
ial training enhances the model’s robustness against adver-
sarial attacks, this usually comes at the cost of losing some
clean accuracy (performance on unperturbed samples). To
alleviate the drop in performance, we follow the method by
[24] and deploy adversarial training as a data augmentation
scheme. In particular, we obtain network parameters θ∗ that
minimize the following objective:

argmin
θ

E
(x,y)∼P(N+1)

XY

[λL(fθ(x), y) + (1− λ)L(fθ(xadv), y)]

(3)
where λ ∈ [0, 1] controls the robustness-accuracy trade-
off. Furthermore, we experiment with the more powerful
method TRADES, which has a modified objective [24].

Evaluation Setup. We focus on image classification and
adopt the framework of DomainBed [11], which is the stan-
dard benchmark in the image domain generalization liter-
ature. For each considered dataset, we select a subset of
N−1 domains to be the source (training) domains and keep
the N th domain as the target (evaluation) domain. We fol-
low DomainBed in reporting the average result across all N
different source vs. target splits Furthermore, we run each
experiment with 3 different seeds and report the standard
deviation across our runs. To evaluate the robustness of our
models, we assessed their performance on the same norm
budget they were trained on. For AutoAttack, we used the
default number of steps provided in its implementation. For
PGD, we conducted the evaluation with 20 steps.

3.1. Generalization of Empirical Robustness

In Table 1, we report the standard accuracy, ℓ∞ Au-
toAttack robust accuracy [4], and ℓ∞ PGD robust accuracy
for nominally- and adversarially-trained models using both
TRADES [24] and PGD augmentation Eq. (3) techniques.
Four runs with different seeds are averaged, and ϵ is fixed at
2/255. We address the following questions:

Q1: Does adversarial training improve clean sample
generalization in the target domain? Adversarial train-
ing methods (TRADES and PGD augmentation) do not en-
hance clean target accuracy compared to the baseline, as
shown in Table 1. 1 Unlike transfer learning, where ro-
bust training in the source domain is favorable, robust



Table 1. Evaluation of ℓ∞ Robustness. We assess the robustness of models trained in the source domain by evaluating their clean
and robust accuracy in both the source and target domains. Three training approaches are considered: nominal training, PGD adversarial
training, and TRADES adversarial training. Robust accuracy is measured against AutoAttack and PGD adversarial attacks. PGD-trained
and TRADES-trained models demonstrate transferable robustness to the target distribution.

Source Target

Method Dataset Clean Acc. Acc. (AA) Acc.(PGD) Clean Acc. Acc. (AA) Acc. (PGD)

PACS 94.69 ± 0.23 1.56 ± 0.33 3.96 ± 0.56 80.24 ± 1.72 0.34 ± 0.16 1.16 ± 0.38

OfficeHome 77.08 ± 0.30 0.03 ± 0.02 0.40 ± 0.05 58.88 ± 0.85 0.00 ± 0.00 0.56 ± 0.21

VLCS 84.34 ± 0.12 0.00 ± 0.00 0.00 ± 0.00 74.55 ± 1.04 0.00 ± 0.00 0.02 ± 0.04
Baseline

TerraIncognita 86.72 ± 0.22 0.00 ± 0.00 0.00 ± 0.00 44.10 ± 2.52 0.00 ± 0.00 0.00 ± 0.00

PACS 92.83 ± 0.22 76.00 ± 0.33 78.12 ± 0.37 75.29 ± 0.56 56.69 ± 0.91 55.82 ± 1.74

OfficeHome 72.04 ± 0.40 52.32 ± 0.69 52.81 ± 0.98 52.19 ± 0.73 34.03 ± 0.26 34.51 ± 0.21

VLCS 79.70 ± 0.22 58.76 ± 0.41 60.02 ± 0.75 69.15 ± 0.74 47.12 ± 0.69 46.73 ± 1.64
PGD

TerraIncognita 71.62 ± 0.74 52.85 ± 2.25 56.05 ± 2.47 27.53 ± 1.45 3.96 ± 1.26 5.59 ± 0.87

PACS 91.16 ± 0.08 79.89 ± 0.22 79.70 ± 0.95 72.32 ± 0.77 57.96 ± 1.56 57.63 ± 1.45

OfficeHome 69.12 ± 0.15 54.52 ± 0.74 56.14 ± 0.59 48.47 ± 0.45 35.79 ± 1.14 36.11 ± 1.63

VLCS 78.58 ± 0.17 63.01 ± 0.79 63.30 ± 0.63 69.36 ± 0.68 52.78 ± 1.66 53.27 ± 0.97
TRADES

TerraIncognita 69.81 ± 0.43 58.64 ± 0.79 59.38 ± 0.99 25.27 ± 3.16 5.49 ± 0.59 7.84 ± 0.65

training does not improve clean data accuracy in the
target domain without fine-tuning. This contrasts with
transfer learning findings and highlights the distinction be-
tween transfer learning and domain generalization. Future
work should explore the conditions under which adversarial
training improves generalization without target fine-tuning.

Q2: Does source domain robustness correspond to
target domain robustness? DNNs exhibit reduced ro-
bustness when evaluated on distinct target domains. How-
ever, 2 higher source domain robustness corresponds
to higher target domain robustness. Improving source
domain robustness can enhance the out-of-distribution ro-
bustness of deployed models, as evidenced by comparing
TRADES with PGD in Table 1.

4. Certified Robustness and Domain General-
ization

To deploy DNNs in dynamic environments, we need
robustness guarantees to carry over into unseen domains.
Thus, we study the generalizability of certified robustness.

Randomized Smoothing Background. Randomized
smoothing (RS) [3] is a method for constructing a “smooth”
classifier from a given classifier fθ. The smooth classifier
returns the average prediction of fθ when the input x is
subjected to additive Gaussian noise:

gθ(x) = Eϵ∼N (0,σ2I) [fθ(x+ ϵ)] . (4)

Let gθ predict the label cA for input x with some
confidence, i.e. Eϵ[f

cA
θ (x + ϵ)] = pA ≥ pB =

Figure 2. Generalizability of certified robustness. We certify
ResNet-50 and ViT-Base against pixel perturbations and input de-
formations. We observe that 1) certified robustness generalizes
to unseen domains, and that 2) a stronger architecture (ViT-Base)
leads to a better source and target certified accuracy.

maxc̸=cA Eϵ[f
c
θ (x + ϵ)], then, as shown by [23], gθ’s pre-

diction is certifiably robust at x with certification radius:

R =
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
, (5)

where Φ−1 is the inverse CDF of the standard Gaussian



Figure 3. Does visual similarity correlate with robustness generalizability? We vary the target domain and plot the certified accuracy
curves for two deformations: scaling and translation. A sample from each domain is shown in the second row. The FID/R-FID distances
between the source domains and each target are reported in the first row. Visual similarity, measured by FID and R-FID, does not correlate
with the level of robustness generalization to the target domain.

distribution. As a result of Eq. 5, argmaxi g
i
θ(x + δ) =

argmaxi g
i
θ(x), ∀∥δ∥2 ≤ R.

While Eq. 5 provides theoretical guarantees for robust-
ness against additive perturbations, DNNs are also brittle
against simple input transformations such as rotation. De-
formRS extended randomized smoothing to certify para-
metric input deformations [1]. In this work, we leverage
RS and DeformRS to study the generalizability of certified
robustness to unseen target domains.

Experimental Setup. We use the Photo, Art, Cartoon,
and Sketch distributions from PACS [14] to split the data
into source and target domains. We employ robust cer-
tification techniques, including RS for pixel perturbations
and DeformRS for input deformations such as rotation and
translation. Data augmentation is applied during training,
focusing solely on the source domains. To evaluate certified
robustness, we plot accuracy curves for both the source and
target domains under various deformations. The certified
accuracy at a given radius R represents the percentage of
correctly classified test samples with a certified radius of at
least R. We calculate the certified radius using established
equations and methodologies. Envelope plots are reported
to illustrate the best certified accuracy per radius over dif-
ferent smoothing deformation parameters. We estimate pA
and bound pB using Monte Carlo sampling with 100k sam-
ples and a probability of failure of 10−3, following standard
practices. Lastly, we compare the ResNet-50 backbone with
the ViT-Base transformer model to assess the impact of ar-
chitecture on generalizability to unseen domains.

4.1. Generalization of Certified Robustness

We investigate the generalizability of certified robustness
to unseen domains and explore factors affecting it.

Q3: Does improving the feature extractor enhance
target certified accuracy? By switching from ResNet-50
to ViT-Base as the backbone architecture, we observe a sig-
nificant improvement in target certified robustness across
deformations. This aligns with the robustness and domain
generalization literature, suggesting that 3 stronger back-
bones lead to better certified robustness and generaliza-
tion accuracy.

Q4: Does perceptual similarity correlate with certi-
fied robustness generalization? Despite measuring the
perceptual similarity between source and target domains us-
ing FID and R-FID, we find that 4 perceptual similarity
metrics are not predictive of performance and robust-
ness generalizability. Note that higher FID/R-FID indi-
cates less similarity of distributions. Surprisingly, the photo
domain, which has the highest FID and R-FID scores, ex-
hibits the largest certified accuracy generalization.

5. Conclusion
We conducted an extensive empirical analysis of adver-

sarial robustness and domain generalization. We found that
empirical and certified robustness generalizes to unseen do-
mains. We also showed that visual similarity is not predic-
tive of the level of generalizability. Based on our findings,
we encourage more research on: (i) methods that improve
certified accuracy in unseen domains, and (ii) distribution
similarity metrics that align with generalization accuracy.
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