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Abstract

Recent research has indicated that the performance of vi-
sion language models on intricate reasoning tasks is signif-
icantly enhanced by applying chain-of-thought (CoT) rea-
soning. However, few studies investigate the impact of the
reasoning chain on the model’s robustness. In this work,
we develop three attack methods to investigate the robust-
ness of vision-language models with chain-of-thought rea-
soning. In particular, we propose a novel attack method
using the stopping reasoning strategy to study the robust-
ness of vision-language models with CoT. Experiments on
SicenceQA dataset show that 1) The rationale generated
by vision-language models with CoT is more susceptible to
attacks compared to the answer part. 2) Vision-language
models with CoT are most vulnerable to the stop reasoning
attack compared to other attacks.

1. Introduction

Recent studies [16] 4] showed that large language mod-
els’ (LLMs) performance on complex reasoning tasks gets
significantly boosted by asking the models to generate a ra-
tionale before producing the answer. A rationale is a se-
ries of intermediate reasoning steps that decompose a com-
plex task into several simple subtasks. The rationale and
its corresponding answer together are referred to as a rea-
soning chain, and the technique of asking LLMs to gen-
erate a reasoning chain is called chain-of-thought (CoT)
prompting [16]]. Zhang et al. [19] extended this technique
into vision-language models, called multimodal CoT, and
demonstrated its effectiveness on complex reasoning tasks
with visual features. The multimodal CoT takes both textual
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and vision information of a question as input and generates
a textual rationale as the intermediate output, then takes the
intermediate output and the question again as input to pro-
duce the answer.

However, the robustness of vision-language models with
chain-of-thought reasoning remains unclear. In this paper,
we apply three attack methods to investigate the robustness
of vision-language models with CoT. First, we compare the
model’s performance under two attacking scenarios, i.e., at-
tacking the model based on 1) the answers and 2) the in-
termediate rationales. These two scenarios use a shared
attack pipeline, which leverages the projected gradient de-
scent (PGD) metho [12]. They differ from the designed
objective functions. For attacking the models relying on
their answers, we construct an objective function between
the model’s answers and ground truth labels. By attacking
the models based on rationales, we build an objective func-
tion using KL divergence between the rationale generated
from the original image and the rationale generated from
the perturbed images. This KL divergence will be used to
perturb the image for the next attack iteration.

Moreover, we study the robustness of vision-language
models with CoT to a novel attack method called stop rea-
soning, where the input images are perturbed to induce the
model to generate [EO.S] token earlier, where [EOS] token
is used to signify the end of the output sequence. The idea
here is to let CoT models stop their reasoning process, and
thus, predict wrong answers. Specifically, we build a cross-
entropy loss function between the rationale and the [EOS]
token. By reducing the loss, the tendency to generate the
[EOS] token is increased. And with an early occurrence of
the [FOS], the model will stop the reasoning process there.

We run experiments on the ScienceQA [11] dataset, a
visual question-answering dataset on scientific domains.

'PGD perturbs the input image based on the gradient of the objective
function in an iterative manner. In this work, PGD with l;,, f norm is used.



The results demonstrate that 1) The rationale generated by
vision-language models with CoT is susceptible to attacks.
We found that attacking the model’s rationales causes a sig-
nificantly larger performance drop compared to only attack-
ing the answer part. 2) In comparison to answer attack and
rationale attack, the multi-modal CoT models are most vul-
nerable to our proposed stop reasoning attack amethod.

2. Related Work and Preliminaries
2.1. Chain-of-Thought Prompting

Chain-of-thought prompting significantly improve the
performance of large language models on complex tasks
by using a series of intermediate reasoning steps [16]. In
general, chain-of-thought prompting can be divided into
two main categories according to the prompts: Zero-Shot-
CoT [7] and Few-Shot-CoT [[16]. Besides labeling CoT
manually, Zhang et al. [18] introduced Auto-CoT which au-
tomatically constructs demonstrations, Wang et al. [[15] and
Zelikman et al. [17] proposed models to generate a ratio-
nale for other training tasks with few human-written seed
rationales. Fu er al. [3] showed that, with more steps, the
model achieves substantially better performance on multi-
step reasoning tasks. Khot et al. [6]] and Zhou et al. [20]
proposed models to solve complex tasks by decomposing
them into simpler sub-tasks. Zhang et al. [19] proposed
MM-CoT which solves tasks with vision features. Besides
greedy thinking, Wang et al. [14] and Li et al. [10] proposed
models think in several paths and predict based on them.

2.2. Multimodal Large Language Model

The vision-language interaction methods can be divided
into two types: fusion encoder and dual encoder [2]].In the
fusion encoder category, OSCAR [9] contacted text, tags,
and image features and feed them into the encoder with
a single-stream architecture. ALBEF [§]] adopted a cross-
attention mechanism to vision and text features after two
separate transformers, called dual-stream architecture. Be-
sides, FLAVA [13] first adopted a dual encoder to obtain
single-modal representations. Then the single-modal em-
beddings are sent to a fusion encoder to obtain cross-modal
representation.

2.3. Preliminary of Multimodal Chain-of-Thought

The MM-CoT model proposed by Zhang et al. [19] is a
two-stage model, adapting UnifiedQABase [5] as the back-
bone language model and applying DETR [1]] as the vision
feature extractor. In the first stage, it takes the text and vi-
sual information of the question as input and outputs a ra-
tionale. In the second stage, the input consists of the origi-
nal visual information and a new text concatenation, which
combines the original text and the generated rationale and

outputs a sentence containing the choice in the form ”The
answer is (choice).”.

3. Methodology

We wonder, how is the vulnerability of the multimodal
models with chain-of-thought reasoning to different at-
tacks. To answer the question, we develop three distinct
attack strategies. Section [3.1]introduces the general attack
pipeline, which is shared in all three attack methods. In
Section the three attack methods including an efficient
novel attack method named stop-reasoning attack are pre-
sented.

3.1. Attack Pipeline

The objective of the attacks is to diminish the predic-
tive accuracy of the model. It is assumed that all model de-
tails, encompassing architecture, parameters, and outputs,
are known when perturbing the input images to attack the
model. For a more robust and compelling comparison, all
attacks employ the same algorithm, ensuring minimal diver-
gence among them.

As previously mentioned, the PGD technique is em-
ployed in all attacks, enabling the modification of pixel
values in input images through specifically designed attack
strategies. To prevent zero loss, the images are initially per-
turbed before the first attack iteration. The shared pipeline
is shown in Algorithm I]in Appendix, and the primary dis-
tinction among the attacks lies in the distinct loss functions
tailored to their specific objectives.

3.2. Attack Methods

This section presents the definitions and particulars of
three attacks: the baseline attack, the rationale attack, and
the stop-reasoning attack. The prediction of the multimodal
CoT model can be divided into two parts: the rationale and
the answer (as illustrated in Figure [T). Throughout the re-
mainder of the paper, rationale refers to the rationale com-
ponent of the prediction, while answer refers to the answer
component.

Definition 3.1. Baseline attack is an attack, which attacks
the model via perturbing input images with increasing the
cross-entropy loss between the answer and the labels.

Definition 3.2. Rationale attack is an attack, which attacks
the model via perturbing input images with increasing the
KL divergence between rationale generated from the origi-
nal images and rationale generated from the perturbed im-
ages.

Definition 3.3. Stop-reasoning attack is an attack, which
attacks the model via perturbing input images with decreas-
ing the cross-entropy loss between rationale and a sequence
of [EOS] tokens.
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Figure 1: Joint MM-CoT model. Initially, we introduce a perturbation to the images. Subsequently, the perturbed images
and original text are fed into the Joint-MM-CoT model to generate the rationale and the answer. The rationale and the
answer are used to perturb the images for the next attack iteration. To ensure differentiability throughout the two stages, a
transfer module is implemented, which directly incorporates the generated rationale logits in the answer stage, bypassing the

decode-reencode process.

3.2.1 Baseline Attack

The first attack is the baseline attack. A trivial model pre-
dicts output directly from the input. The attack based on
the output mirrors a general vulnerability of the multimodal
CoT model. In this attack scenario, the cross-entropy loss
function between the answers and the ground truth choices
is used. As the loss increases, the model becomes more
susceptible to selecting an alternative choice instead of the
correct one. To amplify this tendency, we mitigate the inter-
ference from other tokens in the predictions by constructing
a loss function that exclusively focuses on the choice, dis-
regarding other sentence components. The loss function is
shown as

eXp(manswer)

Sou_y exp(ay)

where x4, swer 18 the predicted logits of the labels, x,, is the
logits of the token v and V' is the vocabulary size used in
the tokenizer.

(1

losschoice = - IOg

3.2.2 Rationale Attack

To explore the influence of the CoT process on models’
robustness, an attack based on the rationale is designed.
This approach is to manipulate the information the ratio-
nale conveys. Since the information is implicit within the
logits distribution of the generated rationale, we employ
the Kullback-Leibler (KL) divergence between two gener-
ated rationales as a measure of information disparity (rela-
tive entropy). The rationale generated from the original im-
ages is established as the baseline. The relative entropy is
computed between this baseline rationale and the rationale
obtained from perturbed images. As the relative entropy
increases, the conveyed information undergoes alteration.

The loss function is shown as follows.

T V

1
losskLDiv = T Z Z Yiabel* (108 Yiabet =108 Yprea) (2)
t=1v=1

where T is the tokens count and V' is the vocabulary size,
Yiabel and Yp,oq indicate probability of corresponding log-
its.

3.2.3 Stop-Reasoning Attack

We introduce a novel attack method called the stop-
reasoning attack. Multimodal CoT models leverage the in-
formation generated in intermediate stages and perform in-
ference step by step. The stop-reasoning attack aims to halt
this process by minimizing the information provided in the
intermediate stages and to cease reasoning by reducing the
length of the rationale. To accomplish this, we construct a
cross-entropy loss function between the rationale logits and
a sequence of [EOS] tokens. As the loss decreases, the
model becomes more inclined to predict the token [EOS]
and stops reasoning. Since the PGD attack technique in-
creases the loss, we use the inverse cross-entropy loss as
our loss.

1 ZT: 1 exp(T(pos))

losslength = —r og %
t=1 > o—1 €xp(Ty)

3
T 3)
where x50 is the logits of the [EOS] token.

4. Experiments

Dataset The ScienceQA dataset [[11] is used to conduct
the attacks, and it is the same dataset used to train the
MM-CoT model. It is a comprehensive question-answering



Settings Subject Grade Total

NAT SOC LANG | 1-3 4-6 79  10-12
Baseline | Original input 6597 71.62 59.09 | 73.07 68.85 62.54 60.00 | 67.95
Baseline attack 3478 54.64 11.36 | 43.05 45.10 3557 0.0 | 41.75
Attacks | Rationale attack 3436 50.13 1591 | 37.09 4427 3522 0.0 | 39.90
Stop-reasoning attack | 14.39 41.51 1591 | 22.52 2740 21.99 0.0 | 24.65

Table 1: The table shows the accuracy of various categories and the entire test dataset. The columns in the subgroup subject”
display the respective accuracy values when the test set is categorized into three subjects: natural science (NAT) with 1202
samples, social science (SOL) with 754 samples, and language science (LANG) with 44 samples. The columns in the
subgroup “grade” indicate the respective accuracy values when the test set is categorized into four grade subcategories: grade
1 to 3 with 453 samples, grade 4 to 6 with 960 samples, grade 7 to 9 with 582 samples, and grade 10 to 12 with 5 samples.

(a) Grade distribution (b) Subject distribution

Figure 2: Distribution of test samples

dataset meticulously tailored for scientific domains, provid-
ing extensive answer annotations. The questions encom-
pass various domains, spanning three subjects, 26 topics,
127 categories, and 379 skills. We utilize 2000 image-
containing samples from the test split to conduct the attacks.

Attack Settings and Metric In all attacks, we employ
the PGD attack algorithm with varying loss functions,
while maintaining consistent hyper-parameters: maximum
change of 0.0627, attack step of 0.0005, and a maximum of
200 attack iterations. The answer accuracy is utilized as the
metric.

Results Table[T| presents the primary results, demonstrat-
ing that the Joint-MM-CoT model achieves an overall accu-
racy of 67.95% on the 2000 test samples using the original
inputs. This accuracy value is considered the baseline and is
compared with the accuracy values obtained under various
attack scenarios. The baseline attack results in a 26.20%
accuracy drop (from 67.95% to 41.75%). The most substan-
tial drop occurs in questions from the language science sub-
ject, plummeting by 26.20% (from 59.09% to 11.36%). The
rationale attack exhibits a total accuracy drop of 28.05%
(from 67.95% to 39.60%), which is better than baseline at-
tack. The decrease in accuracy is primarily attributed to
questions in grades 1-3. The stop-reasoning attack demon-

strates the most effective attack performance, resulting in a
significant 43.3% accuracy drop (from 67.95% to 24.65%).
Compared to the baseline attack, the stop-reasoning attack
performs well in nearly all categories except for the lan-
guage science subject.

Analysis The vulnerability of the multimodal CoT model
is significantly higher when subjected to attacking the ra-
tionales than attacking the answers. Table 1 reveals that
rationale attack causes a reduction of 1.85% in the over-
all prediction accuracy compared to baseline attack (from
41.75% to 39.90%), primarily impacting questions from
lower grades. Furthermore, stop-reasoning attack results in
areduction of 17.1% in comparison to baseline attack (from
41.75% to 24.65%), which shows that the vision-language
models with CoT are most vulnerable to the stop reason-
ing attack compared to other attacks. Stop-reasoning at-
tack exhibits a substantial increase in attack performance
compared to baseline attack, with the primary impact ob-
served in questions from the natural science subject. We
selected 20 samples and identified two common charac-
teristics: all questions have extensive long rationales, and
all rationales contain crucial information towards the end.
As stop-reasoning attack aims to elevate the likelihood of
all rationale tokens being [FO.S], longer rationales have a
higher probability of encountering an early occurrence of
[EOS]. Consequently, the critical information at the end
of the rationale becomes lost. Without this crucial informa-
tion, the advantage conferred by the CoT method is nulli-
fied, disrupting the inference pipeline.

5. Conclusion

In this study, we examine the robustness of vision-
language models with chain-of-though reasoning. An ef-
ficient and novel attack method using stop-reasoning strat-
egy is proposed. Our findings reveal that the model exhibits
greater vulnerability when we attack the generated rationale
and make the model stop reasoning.
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Appendix

Algorithm 1 Attacks with PGD technique

Require: Input text x;, Input image z;, Target label y,

Model M, Loss function L, Perturbation budget €, Step
size o, Number of iterations 7', PGD perturbation mod-
ule '

Ensure: Model output o

1:
2:
3:

9:
10:
11:

® DR

Initialize x} < x;
Add a random initial perturbation z} < x} + §
fort =1to T do
Model output 0 <+ M (z}, x+)
if o is different from y then
break
else
PGD with l;, s norm 2 <— F(x,y, L, €, )
end if
end for
return Model output o

A.

End-to-End Differentiable MM-CoT

We utilize the MM-CoT model as the foundational

framework of our study. MM-CoT comprises two distinct
stages that operate independently and lacks differentiability



Setting Successful | Unsuccessful
Baseline attack 186.21 146.90
Rationale attack 162.18 161.97
Stop-reasoning attack 187.02 118.21
Joint attack 168.14 157.62

Table 2: Average length of baseline predictions. The table
presents the average length of baseline predictions catego-
rized into two groups. The successfully attacked questions
are classified under the successful category, while the failed
attacked questions are classified under the unsuccessful cat-
egory. The length refers to the token count.

in between. To enable backpropagation, we merge the two
stages into a unified model called Joint-MM-CoT. In the
first stage, the MM-CoT model uses image and text input
to generate rationale. In the second stage, the raw text input
and the generated rationale are concatenated. The MM-CoT
model uses the image and concatenated text to infer an an-
swer. To achieve differentiable concatenation of the stages,
we extract the logits directly from the first stage and apply
a sequence of transformations to utilize them in the second
stage. A transfer module that converts logits into a one-hot
matrix and applies filtering is implemented. The one-hot
matrix is constructed based on the position of the largest
logit. And the one-hot matrix is cleaned up by remov-
ing the lines containing the special tokens. Subsequently,
the filtered one-hot matrix is passed through the embedding
layer. Then the embeddings from the rationale are com-
bined with the text embeddings derived from the raw input.
These combined embeddings serve as the text embeddings
for the second stage. Regarding extracting visual features,
the pre-trained model DETR is employed, more specifically,
detr_resnet101_dc5. Furthermore, the inference process is
transitioned from generating predictions for the entire se-
quence in a single run to a token-by-token generation ap-
proach.

B. Average Length of Baseline Predictions

Table [2| displays the average length of the baseline pre-
dictions. Under the baseline attack, the successfully at-
tacked questions are longer than the unsuccessfully attacked
questions (186.21 tokens vs 146.90 tokens). But the dis-
parity is more pronounced under the stop-reasoning attack
(187.02 tokens vs 118.21 tokens). However, in the case
of the rationale attack, the difference in length is minimal
(162.18 tokens vs 161.97 tokens).

C. Joint Attack

Since all the previously mentioned methods are solely
based on a single stage, we hypothesize that the model is

susceptible to attacks that exploit multiple stages. A further
attack is launched, which perturbs images by gradually in-
creasing the relative entropy, thereby impeding the model
from making accurate predictions as a collective effort. In
this scenario, the loss function is a combination of baseline
attack and rationale attack.

1058 j0int = 1085choice + 1055 K LDiw 4

Table [3] illustrates that the attack performance of joint
attack closely resembles that of rationale attack across all
categories. A marginal accuracy difference of 0.6% (from
39.9% to 39.3%) exists between the two, suggesting that
attacks based on multi-stages do not significantly augment
the model’s vulnerability.

D. Examples

The following figures show some examples. The blocks
with the orange background are the common text inputs
and related answers. The blocks in the range with the red
background are the inferences with the corresponding input
images. The blocks in the range with the red background
from top to bottom are under the settings ’without attack™,
the “baseline attack”, the “’rationale attack”, and the stop-
reasoning attack”.
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Question: Select the bird below.

Context: Birds have feathers, two wings, and a beak. A toco toucan is an example of a bird.
Choices: A. "great white shark", B. "white stork"

Answer: B. "white stork"

Answer: The answer is (B). \
Rationale: Birds, mammals, fish, reptiles, and amphibians are groups of animals. The
animals in each group have traits in common.nScientists sort animals into groups based
on traits they have in common. This process is called classification. A white stork is a
bird. It has feathers, two wings, and a beak.nStorks live near water. Storks eat fish, fish,
reptiles, and amphibians.nA great white shark is a fish. It lives underwater. It has fins, not
limbs.nGreat white sharks live near coral reefs. They have fins, not limbs.nA great white
shark is a fish. It lives underwater. It has fins, not limbs.nGreat white sharks can live in

shallow water.. /
Answer: The answer is (B).

Rationale: Birds, mammals, fish, reptiles, and amphibians are groups of animals. The
animals in each group have traits in common.nScientists sort animals into groups based
on traits they have in common. This process is called classification. A white stork is a
bird. It has feathers, two wings, and a beak.nStorks live near water. Storks eat fish,
insects, and fruit.nA great white shark is a fish. It lives underwater. It has fins, not
limbs.nGreat white sharks live near water or in damp places. Storks live underwater.
Storks live in damp places. They use their tails to swim underwater..

/

Answer: The answer is (A). \
Rationale: Birds, mammals, fish, reptiles, and amphibians are groups of animals. The
animals in each group have traits in common.nScientists sort animals into groups based
on traits they have in common. This process is called classification. A white stork is a
mammal. It has fur and feeds its young milk.nStorks do not have teeth! They swallow their|
food whole.nA great white shark is a fish. It lives underwater. It has fins, not limbs.nGreat
white sharks live near coral reefs. They use their fins to drill into coral reefs.nA great white]
shark is a reptile. It has scaly, waterproof skin.nA great white shark is a reptile. It has
scaly, waterproof skin.. /

~

Answer: The answer is (A).
Rationale: a stork is a fish. It has scaly, waterproof skin.nA stag ape is a stag. The
stag ape is a stag. The ape shrew is a stag..

y
)

Figure 3: Example 1. Question id: 6144. Grade: grade 3. Subject: natural science. The blocks from top to bottom are
common text input, image input and inference without attack, image and inference with baseline attack, image and inference
with rationale attack, and image and inference with stop-reasoning attack.
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Question: A baby blue whale is as big as ().

Context: Read the first part of the passage about blue whales.\nA blue whale is big. It is the biggest animal in
the world.\nWhen a blue whale is a new baby, it is as big as a car. When it is older, it is even bigger. It is
as long as two school buses put together.\nComplete the sentence.

Choices: A.'an adult whale', B. 'a car', C. 'two buses'

Answer: B.'acar'

Answer: The answer is (B).

Rationale: The passage tells you that a blue whale is the biggest animal in the
world..

NS

Answer: The answer is (A).
Rationale: The passage says that an adult whale is as big as a car..

J
Answer: The answer is (A). \
Rationale: The passage says that a blue whale is big. It is the biggest animal in
the world.nWhen a blue whale is a new baby, it is as big as a car. When it

is older, it is even bigger. It is as long as two school buses put together.nThe
passage says that an adult whale is as big as a car. When a blue whale is a new

baby, it is as big as a car. When it is older, it is even bigger. It is as long as two
school buses put together..

Answer: The answer is (B).
Rationale:The passage says that a blue whale is the biggest animal in the world..

)

Figure 4: Example 2. Question id: 18387. Grade: grade 1. Subject: language science. The blocks from top to bottom are
common text input, image input and inference without attack, image and inference with baseline attack, image and inference
with rationale attack, and image and inference with stop-reasoning attack.
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Question: What is the capital of Nevada?

Context:

Choices: A.'Carson City', B. 'Reno’, C. 'Salem’, D. 'Las Vegas'
Answer: A.'Carson City'

([ ~N)

Answer: The answer is (A).

Rationale: Carson City is the capital of Nevada..

h 4
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Answer: The answer is (A).
' Rationale: Carson City is the capital of Nevada..

N[
NG

Answer: The answer is (A).
Rationale: Carson City is the capital of Nevada..
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Answer: The answer is (D).
Rationale:
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Figure 5: Example 3. Question id: 14219. Grade: grade 4. Subject: social science. The blocks from top to bottom are
common text input, image input and inference without attack, image and inference with baseline attack, image and inference
with rationale attack, and image and inference with stop-reasoning attack.



Settings Subject Grade Total

NAT SOC LANG 1-3 4-6 7-9 10-12
Baseline Original input 65.97 71.62 59.09 | 73.07 68.85 62.54 60.00 | 67.95
Baseline attack 3478 54.64 11.36 | 43.05 45.10 35.57 0.0 41.75
Attacks Rationale attack 3436 50.13 1591 | 37.09 4427 35.22 0.0 39.90
Stop-reasoning attack | 14.39 41.51 1591 | 22.52 2740 21.99 0.0 24.65
Ablation study | Joint attack 33.86 49.34 1591 | 36.64 43.02 35.57 0.0 39.30

Table 3: Results with joint attack. The table presents accuracy values in percentages for various categories and the entire
test dataset. The columns in the subgroup subject” display the respective accuracy values when the test set is categorized
into three subjects: natural science (NAT) with 1202 samples, social science (SOL) with 754 samples, and language science
(LANG) with 44 samples. The columns in the subgroup “grade” indicate the respective accuracy values when the test set is
categorized into four grade subcategories: grade 1 to 3 with 453 samples, grade 4 to 6 with 960 samples, grade 7 to 9 with
582 samples, and grade 10 to 12 with 5 samples.



