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Abstract

Unlearnable example attacks are data poisoning tech-
niques that can be used to safeguard public data against
unauthorized training of deep learning models. These meth-
ods add stealthy perturbations to the original image, thereby
making it difficult for deep learning models to learn from
these training data effectively. Current research suggests that
adversarial training can, to a certain degree, mitigate the
impact of unlearnable example attacks, while common data
augmentation methods are not effective against such poi-
sons. Adversarial training, however, demands considerable
computational resources and can result in non-trivial accu-
racy loss. In this paper, we introduce the UEraser method
variants, which outperforms current defenses against dif-
ferent types of state-of-the-art unlearnable example attacks
through a combination of effective data augmentation poli-
cies and loss-maximizing adversarial augmentations. In
stark contrast to the current SOTA adversarial training meth-
ods, UEraser uses adversarial augmentations, which extends
beyond the confines of `p perturbation budget assumed by
current unlearning attacks and defenses. UEraser suppresses
the unlearning effect with error-maximizing data augmenta-
tions, thus restoring trained model accuracies. Interestingly,
UEraser-Lite, a fast variant without adversarial augmenta-
tions, is also highly effective in preserving clean accuracies.
On various unlearnable example attacks, it achieves results
that are comparable to those obtained during clean training.
We also demonstrate the efficacy of UEraser against possible
adaptive attacks. Our code is open source1 and available to
the deep learning community.

1. Introduction
Deep learning has achieved great success in fields such

as computer vision [10] and natural language processing [4],

*Equal contribution. Correspondence to Xitong Gao.
1https://github.com/lafeat/ueraser.

and the development of various fields now relies on large-
scale datasets. While these datasets have undoubtedly con-
tributed significantly to the progress of deep learning, the
collection of unauthorized private data for training these
models now presents an emerging concern. Recently, nu-
merous poisoning methods [7, 11, 17, 19, 21] have been pro-
posed to add imperceptible perturbations to images. These
perturbations can form “shortcuts” [8, 11] in the training
data to prevent training and thus make the data unlearnable
in order to preserve privacy. It is commonly perceived that
the only effective defense against unlearnable examples are
adversarial training algorithms [7, 11, 19]. Popular data aug-
mentation methods such as CutOut [5], MixUp [25], and
AutoAugment [3], however, have all been demonstrated to
be ineffective defenses.

Current methods of unlearnable attacks involves the spec-
ification of an `p perturbation budget, where p ∈ {2,∞} in
general. Essentially, they constrain the added perturbation
to a small ε-ball of `p-distance from the source image, in
order to ensure stealthiness of these attacks. Adversarial
training defenses [7, 14] represent a defense mechanism that
seeks to counteract the bounded perturbations from such
unlearnable attacks. However, large defensive perturbations
comes with significant accuracy degradations. This prompts
the inquiry of the existence of effective defense mechanisms
that leverage threat models that are outside the purview of
attackers. Specifically, can we devise effective adversarial
policies for training models that extend beyond the confines
of the `p perturbation budgets?

In this paper, we thus propose UEraser, which performs
error-maximizing data augmentation, to defense against un-
learning poisons. UEraser challenges the preconception that
data augmentation is not an effective defense against unlearn-
ing poisons. UEraser expands the perturbation distance far
beyond traditional adversarial training, as data augmentation
policies do not confine themselves to the `p perturbation
constraints. It can therefore effectively disrupt “unlearning
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Figure 1: A high-level overview of UEraser for countering unlearning poisons. Note that UEraser recovers the clean accuracy
of unlearnable examples by data augmentations. The reported results are for EM [11] attack.

shortcuts” formed by attacks within narrow `p constraints.
Yet, the augmentations employed by UEraser are natural
and realistic transformations extensively utilized by existing
works to improve the models’ ability to generalize. This, in
turn, helps in avoiding accuracy loss due to perturbations
used by adversarial training that could potentially be out-of-
distribution. Finally, traditional adversarial training is not
effective in mitigating unlearning poisons produced by adap-
tive attacks [7], while UEraser is highly resiliant against
adaptive attacks with significantly lower accuracy reduction.

In summary, our main contributions are as follows:

• It extends adversarial training beyond the confines of
the `p perturbation budgets commonly imposed by at-
tackers into data augmentation policies.

• We propose UEraser, which introduces an effective
adversarial augmentation to wipe out unlearning pertur-
bations. It defends against the unlearnable attacks by
maximizing the error of the augmented samples.

• UEraser is highly effective in suppressing the unlearn-
ing effect on state-of-the-art (SOTA) unlearning attacks,
outperforming existing SOTA defense methods. It lays
a fresh foundation for future competitions among un-
learnable example attack and defense strategies.

Unlearnable example attacks bear great significance, not
just from the standpoint of privacy preservation, but also
as a form of data poisoning attack. It is thus of great sig-
nificance to highlight the shortcomings of current attack
methods. Perhaps most surprisingly, even a well-known un-
learnable attack such as EM [11] is unable to impede the
effectiveness of UEraser. By training a ResNet-18 model
from scratch using exclusively CIFAR-10 unlearnable data
produced with EM (with an `∞ budget of 8/255), UEraser
achieves exceptional accuracy of 95.24% on the clean test
set, which closely matches the accuracy achievable by stan-
dard training on a clean training set. This suggests that
existing unlearning perturbations are tragically inadequate

in making data unlearnable, even with adaptive attacks that
employs UEraser. By understanding their weaknesses, we
can anticipate how malicious actors may attempt to exploit
them, and prepare stronger safeguards against such threats.
We hope UEraser can help facilitate the advancement of
research in these attacks and defenses.

2. Related Work

Adversarial examples and adversarial training. Ad-
versarial examples deceive machine learning models by
adding adversarial perturbations, often imperceptible to hu-
man, to source images, leading to incorrect classification
results [9, 18]. White-box adversarial attacks [18] maxi-
mize the loss of a source image with gradient descent on
the defending model to add adversarial perturbations onto
an image to maximize its loss on the model. Effective meth-
ods to gain adversarial robustness usually involve adversar-
ial training [14], which leverages adversarial examples to
train models. Adversarial training algorithms thus solve
the min-max problem of minimizing the loss function for
most adversarial examples within a perturbation budget, typ-
ically bounded in `p. Recent years have thus observed an
arms race between adversarial attack strategies and defense
mechanisms [1, 2, 22, 23].

Unlearnable examples. Unlearnable examples attacks
are a type of data poisoning methods with bounded perturba-
tion that aims to make learning from such examples difficult.
Unlike conventional data poisoning methods, unlearnable
examples methods usually require adding imperceptible per-
turbations to all examples [7, 11, 17, 19, 21]. NTGA [24]
simulates the training dynamics of a generalized deep neu-
ral network using a Gaussian process and leverages this
surrogate to find better local optima with improved transfer-
ability. Error-minimizing (EM) [11] poison generates imper-
ceptible perturbations with a min-min objective, minimizing
the errors of training examples on a trained model. Unlike
EM, Adversarial Poisoning (TAP) [6] considers the adver-
sarial sample generation and uses the error maximization



process to generate adversarial samples. Hypocritical Per-
turbations (HYPO) [19] instead uses a pretrained surrogate
rather than the above min-min optimization. As the above
method cannot defend against adversarial training, Robust
Error-Minimization (REM) [7] uses an adversarially-trained
model as an adaptively attack to generate stronger unlearn-
able examples. Yu et al. [21] generate linearly separable
perturbations (LSP) for unlearnable examples. Autoregres-
sive poisoning (AR) [17] prescribes perturbation that can
generalize to different datasets and architectures. One pixel
shortcut (OPS) [20] is a targeted availability poisoning at-
tack that perturbs only one pixel of an image, generating an
effective attack against `p-bounded adversarial training.

3. Preliminaries
Attacker. We assume the attacker has access to the orig-

inal data they want to make unlearnable, but cannot alter
the training process [12]. Typically, the attacker attempts to
make the data unlearnable by adding perturbations to the im-
ages to prevent trainers from using them to learn a classifier
that generalize well to the original data distribution. For-
mally, suppose we have a dataset consisting of original clean
examples Dclean = {(x1, y1), . . . , (xn, yn)} drawn from a
distribution S , where xi ∈ X is an input image and yi ∈ Y is
its label. The attacker thus aims to construct a set of sample-
specific unlearning perturbations δ = {δx|x ∈ X}, in order
to make the model fθ : X → Y trained on the unlearnable
examples set Due(δ) = {(x+ δx, y) | (x, y) ∈ Dclean} per-
form poorly on a test set Dtest sampled from S:

maxδ E(xi,yi)∼Dtest [L(fθ?(δ)(xi), yi)],

s.t. θ?(δ) = argminθ
∑

(xi,yi)∈Due(δ)
L(fθ(x̂i), yi),

(1)

where L is the loss function, typically the softmax cross-
entropy loss. For each image, the noise δi is bounded by
‖δi‖p ≤ ε, where ε is a small perturbation budget such
that it may not affect the intended utility of the image, and
‖·‖p denotes the `p norm. Table 1 provides samples gener-
ated by unlearnable example attacks and their corresponding
perturbations (amplified with normalization).

Defender. The goal of the defender is to ensure that
the trained model learns from the poisoned training data,
allowing the model to be generalized to the original clean
data distribution Dclean. The attacker assumes full control of
its training process. In our context, we thus assume that the
attacker’s policy is to perform poison removal on the image,
in order to ensure the trained model generalizes even when
trained on poisoned dataDue. It has been shown in [7, 19, 11]
that Adversarial training [14] is effective against unlearnable
examples, which optimizes the following objective:

argmin
θ

E(x̂,y)∼Due

[
max

‖δadv‖p≤ε
L(fθ(x̂+ δadv), y)

]
. (2)

Specifically for each image x̂ ∈ Due, it finds an adversarial
perturbation δadv that maximizes the classifier loss. It then
performs gradient descent on the maximal loss to optimize
for the model θ. A model trained on the unlearnable set Due
in this manner thus gain robustness to perturbations in the
input, and can generalize to clean images.

4. Adversarial Augmentations
Adversarial training can be viewed as a practical data aug-

mentation policy, which presents an interesting perspective
as it allows the model to choose its own policy in the form
of `p-bounded perturbations adaptively. However, it poses a
considerable challenge due to its use of large defensive per-
turbations, often resulting in reduced accuracy. This begs the
question of whether new defense mechanisms can leverage
unseen threat models that unlearnable attacks may be unable
to account for.

Inspired by this, we introduce UEraser, which performs
adversarial augmentations polices that preserves to the se-
mantic information of the images rather than adding `p-
bounded adversarial noise. Our objective is a bi-level opti-
mization, where the inner level samples image transforma-
tion policies T (·) from a set of all possible augmentationsA,
in order to maximize the loss, and the outer level performs
model training with adversarial polices:

argminθ E(x,y)∼Due [maxT ∼AL(fθ(T (x)), y)]. (3)

Intuitively, UEraser finds the most “adversarial” augmen-
tation policies for the current images, and use that to train
the model in order to prevent unlearnable “shortcuts” from
emerging during model training. Compared to adversarial
training methods that confine the defensive perturbations
within a small ε-ball of `p distance, here we adopt a differ-
ent approach that allows for a more aggressive distortion.
Moreover, augmentation policies also effectively preserve
the original semantics in the image. By maximizing the
adversarial loss in this manner, the model can thus avoid
training from the unlearning “shortcuts” and instead learn
from the original features.

To generate augmentation policies with high-level of dis-
tortions, we select PlasmaTransform [16], and TrivialAug-
ment [15], two modern suites of data augmentation policies,
and ChannelShuffle in sequence, to form a strong pipeline
of data augmentations polices. PlasmaTransform performs
image distortion with fractal-based transformations. Triv-
ialAugment provide a suite of natural augmentations which
shows great generalization abilities that can train models
with SOTA accuracies. Finally, ChannelShuffle swaps the
color channels randomly, this is added to further increase the
aggressiveness of adversarial augmentation policies. Inter-
estingly, using this pipeline without the error-maximization
augmentation sampling can also significantly reduce the ef-
fect of unlearning perturbations.



Table 1: The visualization of unlearned examples and perturbations of eight poisoning methods on CIFAR-10.

Poisons EM [11] REM [7] HYPO [19] NTGA [24] TAP [6] LSP [21] AR [17] OPS [20]

Clean

Perturbations

Type `∞, ε = 8/255 `2, ε = 1.30 `2, ε = 1.00 `0, ε = 1

Finally, we provide an algorithmic overview of UEraser
in Algorithm 1. It accepts as input the poisoned training
dataset Due, batch size B, randomly initialized model fθ,
number of training epochs N , number of error-maximizing
augmentation epochs W , learning rate α, number of repeated
sampling K, and a suite of augmentation policies A. For
each sampled mini-batch x,y of data points from the dataset,
it applies K different random augmentation policies for each
image in x, and compute the corresponding loss values for
all augmented images. It then selects for each image in x, the
maximum loss produced by its K augmented variants. The
algorithm then uses the averaged loss across the same mini-
batch to perform gradient descent on the model parameters.
At last, the algorithm returns the trained model parameters θ
after completing the training process.

From Algorithm 1, we can know the training of UEraser
is affected by two hyperparameters, namely, the numbers of
repeated augmentation samples K per image and the epochs
of error-maximizing augmentations W . We denote the ap-
proach that uses only combinations of data augmentations
as UEraser-Lite, It requires only 1 augmentation sample per
training image. UEraser and UEraser-Max, on the other
hand, use error-maximizing augmentations, with the only
difference in the epochs of error-maximizing augmentations
W . UEraser-Max utilizes the maximization augmentations
throughout, whereas UEraser requires use in the early stages
of training. In most cases, UEraser or UEraser-Lite can
achieve similar results to UEraser-Max. Therefore, it is
more practical to use UEraser-Lite or UEraser due to its
faster training speed.

5. Experimental results

To demonstrate the effectiveness of UEraser, we se-
lected 8 SOTA unlearnable example attacks, namely:
Error-Minimization (EM) [11], Hypocritical Perturbations
(HYPO) [19], NTGA [24], Robust Error-Minimization
(REM) [7], Adversarial Poisons (TAP) [6], Linear-separable
Synthetic Perturbations (LSP) [21], Autoregressive Poison-
ing (AR) [17], and One-pixel Shortcut (OPS) [20]. The
experimental results of UEraser and defenses including ad-
versarial training [14] and ISS [13] on the CIFAR-10 dataset
are shown in Table 2. For adaptive attacks, we evaluated

Table 2: Clean test accuracies (%) of UEraser on CIFAR-
10. All experiments are conducted on the ResNet-18. “U-
Lite”, “U”, and “U-Max” respectively denote UEraser-Lite,
UEraser, and UEraser-Max. “ST” and “AT” are standard
and adversarial training respectively.

Methods ST U-Lite U U-Max ISS [13] AT

EM 21.24 90.78 93.38 95.24 92.27 83.02
REM 33.12 85.49 91.02 92.54 91.34 82.87

HYPO 72.12 85.67 87.59 88.67 84.77 85.49
NTGA 18.15 78.29 84.41 87.94 72.65 70.05
TAP 7.32 83.29 84.17 82.47 83.05 81.19

LSP 14.95 84.92 85.07 94.95 82.71 84.27
AR 12.04 87.12 88.64 89.82 84.67 84.16

OPS 15.20 68.50 73.22 81.84 77.81 11.08

Table 3: Adaptive poisoning with EM on CIFAR-10.
Methods Standard UEraser-Lite UEraser UEraser-Max

Baseline 21.21 90.78 93.38 95.24
+UEraser-Lite 29.36 81.24 87.68 89.55
+UEraser-Max 35.24 60.15 71.04 80.28

UEraser where the adversary leverages our UEraser variants,
and Table 3 shows the results.

6. Conclusion

Using the intuition of disrupting the unlearning perturba-
tion with perturbations beyond the `p budgets, we proposed
a simple yet effective defense method called UEraser, which
can mitigate unlearning poisons and restore clean accuracies.
UEraser achieves robust defenses on unlearning poisons
with simple data augmentations and adversarial augmen-
tation policies. Similar to adversarial training, it employs
error-maximizing augmentation to further eliminate the im-
pact of unlearning poisons. Our experiments on state-of-the-
art unlearnable example attacks demonstrate that UEraser
outperforms existing countermeasures such as adversarial
training and ISS. Our results suggest that existing unlearn-
ing perturbations are tragically inadequate in making data
unlearnable. By understanding their weaknesses, we can an-
ticipate how malicious actors may exploit them, and prepare
safeguards against such threats. We hope UEraser can help
facilitate future research in these attacks and defenses.
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A. Statement

Availability poisoning aims to prevent unauthorized train-
ing on personal data. From this perspective, this type of
data poisoning is usually considered as a defender, whereas
implementing malicious training on protected data is con-
sidered as an attacker. However, data poisoning is widely
recognized as a backdoor attack method. Thus in this paper,
we define the poisoner as the attacker and the UEraser as the
defender.

B. Algorithm

Algorithm 1 Training with UEraser.

1: function UERASER(Due, B, fθ, N,W,α,K,A)
2: for n ∈ [1, . . . , N ] do
3: if n ≥W then K ← 1 end if
4: for (x,y) ∼ minibatch(Due, B) do
5: for i ∈ [1, . . . , B] do
6: for j ∈ [1, . . . ,K] do
7: aug ∼ A
8: Lij ← L(fθ(aug(xi)),yi)
9: end for

10: Ladv
i ← maxj∈[1,...,K] Lij

11: end for
12: θ ← θ − α∇θ

1
B

∑
i∈[1,...,B] L

adv
i

13: end for
14: end for
15: return θ
16: end function

C. Standard Augmentation

For baselines to compare against, we perform data aug-
mentation via random flipping, and random cropping to
32× 32 images on each image.

D. Unlearning Perturbution Budgets

The attacks, EM [11], REM [7], and HYPO [19], all
have a permitted perturbation bound of `∞ = 8/255 for
each image. Additionally, the LSP [21] and AR [17] attacks
permit `2 = 1.30 and `2 = 1.00, respectively.

E. Computational Overhead

E.1. Adversarial Training

For comparison, the baseline defenses against the at-
tack methods on CIFAR-10 employ PGD adversarial train-
ing [14], following the evaluation of [7]. The adversarial
training perturbation bounds used were `∞ = 8/255 as
baseline defenses.

Table 4: Computational overhead of UEraser.

Method GPU hours (V100)

Standard 0.6
UEraser-Lite 1.0
UEraser 2.1
UEraser-Max 5.8

F. Attack and Defense Baselines
We use eight baseline attacks and two exisiting SOTA

defenses for evaluation and comparisons in our experiments
(Table 2). Each attack method is implemented from their
respective official source code for a fair comparison. We
adopt experimental setup identical to the original publica-
tions, and use perturbation budgets described in Appendix D.
For defenses, we compare UEraser variants against the cur-
rent SOTA techniques, image shortcut squeezing [13] and
adversarial training [14]. The compared defenses (ISS and
adversarial training) respectively follow the original source
code and PGD adversarial training [14].
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