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Abstract

Generalizing to unseen image domains is a challeng-
ing problem primarily due to the lack of diverse training
data, inaccessible target data, and the large domain shift
that may exist in many real-world settings. As such data
augmentation is a critical component of domain generaliza-
tion methods that seek to address this problem. We present
Adversarial Bayesian Augmentation (ABA), a novel algo-
rithm that learns to generate image augmentations in the
challenging single-source domain generalization setting.
ABA draws on the strengths of adversarial learning and
Bayesian neural networks to guide the generation of diverse
data augmentations – these synthesized image domains aid
the classifier in generalizing to unseen domains. We demon-
strate the strength of ABA on style shift. ABA outper-
forms all previous state-of-the-art methods, including pre-
specified augmentations, pixel-based and convolutional-
based augmentations. Full paper: https://arxiv.
org/abs/2307.09520. Code: https://github.
com/shengcheng/ABA.

1. Introduction
Improving the generalization of deep neural networks

to out-of-distribution samples is a fundamental yet chal-
lenging problem in machine learning and computer vi-
sion [21, 10, 15]. Typically, neural networks are trained and
tested on data samples from the same distribution (under the
i.i.d. assumption); under this setting, image classifiers have
achieved impressive performances. However, in real-world
applications, the distribution of test samples can drastically
differ from the training samples [20, 17]. This is especially
problematic when the process of acquiring labeled samples
from the target test domain is expensive or infeasible, mak-
ing it difficult to apply semi-supervised learning for domain
adaptation [26, 25]. Therefore, there is a need to develop
techniques that enable deep neural networks to capture the
domain-invariant patterns in the data [15, 23], facilitating
improved generalization to out-of-distribution samples.

In the multi-source domain generalization (MSDG) set-
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Figure 1: An illustration of the diversity introduced by Ad-
versial Bayesian Augmentations. The blue and orange sur-
faces represent the source (seen) and target (unseen) do-
mains respectively. The red dots represent the samples aug-
mented by ABA; these augmentations expose the classifier
to regions closer to the target domain, thereby improving
image classifiers’ generalization to unseen domains.

ting, where there are multiple source domains for training,
domain label information can be leveraged to learn the do-
main shift [15, 4, 23]. Prior information about the target
domain is also useful to design specific data augmentation
methods to tackle domain shift. However, in the single-
source domain generalization (SSDG) setting, where only
one domain is available for training, it is more challenging
to address the domain shift issue. In this paper, we focus on
the strict SSDG setting, where only one source domain is
available for training and no prior knowledge is available
about the target domain. Recent work in SSDG focuses
on augmenting the data to simulate the presence of out-
of-distribution domains. One way involves learning-free
data augmentation methods, such as RandConv [24], Aug-
mix [9] and JiGen [1] – here the data augmentation is pre-
specified and does not evolve or adapt during training. An-
other approach is based on adversarial perturbations, which
involves generating adversarial samples to improve gener-
alization, such as Augmax [22], ADA [20], M-ADA [18],
and ALT [7]. Although the Bayesian neural networks as the
backbone of the classifier show good generalization ability
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to out-of-distribution samples intrinsically [14, 23, 2], and
some papers [19] use Bayesian neural networks for gener-
ating images, none of the work directly augments the data
by Bayesian neural network for domain generalization.

In this paper, we present a novel approach called Adver-
sarial Bayesian Augmentation, dubbed ABA, which draws
on the strengths of adversarial learning and Bayesian neural
networks to generate more diverse data and improve gen-
eralization on different domains. Specifically, the adver-
sarial learning-based methods, which explore a wider aug-
mentation space, already outperforms learning-free meth-
ods [7, 22] on SSDG. The introduction of weight uncer-
tainty by the Bayesian neural network further enhances the
strength of data augmentation, as shown in Figure 1. Our
experimental results demonstrate ABA’s superior perfor-
mance compared to existing methods.
The key contributions and findings of the paper thus are:
• We introduce a novel data augmentation method, dubbed

ABA, which combines adversarial learning and Bayesian
neural network, to improve the diversity of training data
for single-source domain generalization setting.

• We empirically validate the effectiveness of our proposed
method on style generalization. Our method outperforms
all existing state-of-art methods.

2. Proposed Method
Let S and T represent the source and target domains re-

spectively, which share the same label space. The training
set is a subset in the source domain and contains N train-
ing pairs, denoted as {(xi, yi)}Ni=1 ⊂ S. The objective of
SSDG is to use S to learn parameters θ of a classifier f
which also can generalize well to target domain T .

2.1. Adversarial Bayesian Augmentation

To accomplish SSDG, since no information is available
from the target domain T , previous works focus on data
augmentation, denoted as g. In this paper, we design g as a
L-layer Bayesian convolutional neural network, parameter-
ized by Φ = {ϕl}Ll=1, where ϕi ∈ Rkl×kl×Cin(l)×Cout(l) are
the parameters of each Bayesian convolutional layer. Fol-
lowing the setting in [24], we randomly sample kl from
K = {1, 3, ...n}. Cin(l) and Cout(l) represent the number of
input and output channels for each layer convolutional ker-
nel. Since g is an image augmentation function, the number
of input channels for the first and last layer are equal to the
number of image channels (3 for color images and 1 for
grayscale images).

To perform Bayesian inference, we need to estimate
the posterior distribution p(ϕl|x, y), which is intractable in
closed form. To approximate it, we adopt the variational
Bayesian inference approach and use a variational distribu-
tion q(ϕl). This distribution is obtained by minimizing the
KL divergence between q(ϕl) and true posterior distribution

Algorithm 1: Learning with Adversarial Bayesian
Augmentation (ABA)

Input : {xi, yi}Ni=1

Output : Classifier f parameters θ∗

1 for t← 1 to T do
2 if t < Twarmup then
3 θ ← θ − γ ▽Lcls

4 else
5 /* Training ABA */

6 Φ← Φ0

7 for m← 1 to Tadv do
8 yg = f(g(x,Φ), θ)
9 Φ← Φ− η▽LELBO // See (1)

10 end for
11 /* Train classifier */

12 Φ← µ+ σ ⊙ ϵ // Sample parameters

13 θ ← θ − γ ▽ (Lcls + αLKL) // See (2),(3)
14 end if
15 end for
16 Return θ

p(ϕl|x, y). To enable efficient sampling of the variational
distribution, we re-parameterize as ϕl = µl + σlϵl, where
ϵl is a sample from the standard normal distribution, which
allows us to compute the gradients of µl and σl. We denote
µ = {µl}Ll=1 and σ = {σl}Ll=1. So Φ = {µ,σ}.

The optimization of ABA is formulated as a min-max
problem. Initially, we optimize the g network using ad-
versarial optimization to augment images that can fool the
classifier f . To achieve this, we use the evidence lower
bound (ELBO) of the variational Bayesian network as the
loss function. ELBO is a lower bound on the log marginal
likelihood of the observed data and is defined as follows:

LELBO =
1

N

N∑
i=1

Eg∼q(Φ)[log(yi|g(xi), θ)]

− β

L∑
l=1

KL(q(ϕl)||p(ϕl)), (1)

where the prior distribution p(ϕl) of each layer follows
N (0, 1

kl×kl×Cin(l)
), which is used in network initializa-

tion [8]. Theoretically, the coefficient β for the KL term
should be 1. However, in practice, for small datasets or
large models, smaller β (0 < β < 1) is preferred [13].

Starting from a random initialization, the parameters of
g are iteratively updated by maximizing the negative of
ELBO. In contrast to adv-BNN [13], which constrains the
adversarial samples bounded by ℓp norm, we control the
strength of adversarial samples by adjusting the learning
rate η and the number of adversarial steps Tadv . The final
augmented images xg are obtained through Bayesian infer-
ence using the optimized parameters Φ∗ and clamped to the
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Method MNIST-10K MNIST-M SVHN USPS SYNTH Target Avg.

ERM 98.40 (0.84) 58.87 (3.73) 33.41 (5.28) 79.27 (2.70) 42.43 (5.46) 53.50 (4.23)
ADA N/A 60.41 35.51 77.26 45.32 54.62
M-ADA 99.30 67.94 42.55 78.53 48.95 59.49
ESDA 99.30 (0.10) 81.60 (1.60) 48.90 (5.20) 84.00 (1.20) 62.20 (1.30) 69.12 (2.33)
AdvBNN 98.23 (0.08) 71.79 (0.69) 44.85 (0.55) 46.05 (0.53) 44.99 (0.54) 51.92 (0.51)
Augmix 98.53 (0.18) 53.36 (1.59) 25.96 (0.80) 96.12 (0.72) 42.90 (0.60) 54.59 (0.50)
1-layer convolutional-based augmentations
RandConv 98.85 (0.04) 87.76 (0.83) 57.62 (2.09) 83.36 (0.96) 62.88 (0.78) 72.88 (0.58)
ALT1-layer 98.41 (0.15) 72.80 (2.06) 47.07 (1.88) 94.79 (0.88) 66.27 (1.56) 70.23 (1.22)
ALT1-layer+RandConv 98.54 (0.10) 75.77 (1.51) 49.90 (1.62) 95.64 (0.62) 68.61 (1.75) 72.47 (1.18)
ABA1-layer 98.82 (0.09) 78.81 (1.64) 51.88 (1.93) 96.22 (0.26) 71.25 (1.27) 74.57 (0.52)
ABA1-layer+RandConv 98.78 (0.09) 78.62 (0.92) 52.04 (1.13) 96.16 (0.16) 71.23 (0.93) 74.51 (0.70)
3-layer convolutional-based augmentations
ABA3-layers 98.73 (0.10) 80.94 (0.39) 55.88 (0.70) 96.34 (0.54) 73.09 (0.34) 76.56 (0.06)
ABA3-layers+RandConv 98.67 (0.11) 80.05 (0.81) 56.87 (1.05) 96.55 (0.34) 73.40 (0.19) 76.72 (0.41)
5-layer convolutional-based augmentations
ALT5-layer 98.46 (0.27) 74.28 (1.36) 52.25 (1.54) 94.99 (0.68) 68.44 (0.98) 72.49 (0.87)
ALT5-layer+RandConv 98.46 (0.25) 76.90 (1.42) 53.78 (1.97) 95.40 (0.72) 69.40 (1.07) 73.87 (1.03)
ALT5-layer+Augmix 98.55 (0.11) 75.98 (0.89) 55.01 (1.34) 96.17 (0.45) 68.93 (2.17) 74.38 (0.86)
ABA5-layer 98.78 (0.06) 80.54 (0.53) 52.45 (1.21) 95.81 (0.47) 70.25 (1.21) 74.76 (0.52)
ABA5-layer+RandConv 98.76 (0.12) 79.69 (0.35) 54.09 (1.27) 96.42 (0.35) 71.55 (0.96) 75.44 (0.61)
ABA5-layer+Augmix 98.66 (0.16) 80.24 (0.51) 56.43 (0.59) 96.14 (0.64) 70.91 (0.83) 75.93 (0.60)

Table 1: SSDG accuracy on Digits dataset. The source domain is MNIST-10K. The target domains are MNIST-M, SVHN,
USPS, SYNTH. We report the mean (and standard deviation) of 5 runs.

Method Photo Cartoon Art Sketch Avg.

ERM 38.93 70.00 68.83 39.36 54.28
JiGen 41.70 72.23 67.70 36.83 54.61
SagNet 48.53 75.66 73.20 50.06 61.86
ADA 44.63 71.96 72.43 45.73 58.68
AdvBNN 45.93 (0.41) 60.24 (0.95) 75.33 (0.95) 26.19 (1.23) 51.92 (1.15)
Augmix 45.24 (1.12) 74.66 (1.09) 71.47 (0.64) 47.72 (1.72) 60.51 (1.14)
1-layer convolutional-based augmentations
RandConv 49.80 (4.23) 67.90 (1.55) 69.63 (2.15) 54.06 (1.96) 60.34 (2.47)
ALT1-layer 50.83 (2.13) 75.00 (0.62) 73.87 (1.31) 47.83 (1.95) 61.88 (1.50)
ALT1-layer+RandConv 52.24 (0.82) 75.16 (0.67) 73.46 (1.29) 49.21 (2.14) 62.51 (1.23)
ABA1-layer 54.49 (1.35) 75.61 (0.89) 75.59 (1.56) 52.84 (2.80) 64.63 (1.65)
ABA1-layer+RandConv 52.32 (1.82) 76.01 (0.56) 75.77 (1.64) 50.20 (1.93) 63.58 (1.49)
3-layer convolutional-based augmentations
ABA3-layers 58.86 (0.83) 77.49 (0.57) 75.34 (0.89) 53.76 (2.46) 66.36 (1.19)
ABA3-layers+RandConv 56.95 (0.80) 77.21 (0.85) 75.34 (0.52) 53.52 (0.90) 65.76 (0.15)
5-layer convolutional-based augmentations
ALT5-layer 54.33 (1.08) 75.96 (1.12) 74.06 (1.09) 50.03 (2.41) 63.60 (1.43)
ALT5-layer+RandConv 55.66 (0.50) 76.23 (0.80) 73.96 (0.54) 50.86 (0.79) 64.18 (0.66)
ALT5-layer+Augmix 55.09 (1.87) 77.36 (0.73) 75.69 (1.21) 50.72 (1.41) 64.72 (1.30)
ABA5-layer 59.04 (1.43) 77.16 (0.35) 74.71 (0.76) 53.18 (2.07) 66.02 (1.15)
ABA5-layer+RandConv 57.59 (1.26) 76.66 (0.24) 75.61 (1.02) 54.12 (1.33) 66.00 (0.96)
ABA5-layer+Augmix 57.87 (0.22) 77.29 (0.78) 74.70 (0.96) 52.35 (0.03) 65.55 (0.49)

Table 2: SSDG accuracy on PACS. Each column is the average accuracy on the target domains trained on the given source
domain. We report the mean (and standard deviation) of 5 runs. More details about the accuracy of the source domain to
each target domain are in the Appendix.

image range. Note that we can sample multiple augmented
images from Bayesian inference, and we sample twice de-
noted as xg1 and xg2 . These augmented images can be used
for classifier learning in the presence of domain shift.

Next, we optimize the classifier f with a loss function
consisting of two terms: a cross-entropy loss, which is

Lcls = CrossEntropy(f(xg1 , θ), y), (2)

and a consistency regularization loss, which helps to keep
the prediction consistent on augmented data, defined as:

LKL = KL(pc||p̄) + KL(pg1 ||p̄) + KL(pg2 ||p̄), (3)

where pc, pg1 , pg2 denotes the softmax prediction of f on
clean image x and augmented images xg1 , xg2 respectively.
p̄ is the average of pc, pg1 , and pg2 .
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Figure 2: Qualitative comparison of PACS images aug-
mented by RandConv, ALT and our ABA.

Implementation. Algorithm 1 depicts the implementation
details. For network design, the activation of multiple layers
ABA is LeakyRelu. The second augmented image xg2 can
be obtained not only through Bayesian inference, but also
obtained from other data augmentation techniques, such as
RandConv [24], Augmix [9]. We train the classifier for a
total of T iterations. At first Twarmup iterations, we train
the classifier without any data augmentation methods. Af-
ter Twarmup, for each iteration, we randomly initialize the
g and update its parameters by adversarial Bayesian train-
ing. The learning rate of adversarial learning is η. After
Tadv steps learning, we sample the augmented images via
Bayesian inference and clamp them to the image range. We
then use the augmented images, along with the clean image,
to train the classifier f using the classification loss and con-
sistency regularization. The learning rate of the classifier
is γ and the weight of consistency regularization is α. The
implementation details of each dataset are in Appendix.

3. Experiments
In this section, we validate our method on two popu-

lar style-shift benchmark datasets: (1) Digits is composed
of digit images from MNIST-10K [11], MNIST-M [6],
SVHN [16], USPS [3], SYNTH [5]. Following the set-
ting in [20], MNIST-10K is the source domain contain-
ing 10,000 images from MNIST, and the other four datasets
are target domains. (2) PACS [12] consists of images from
four domains: photo, art painting, sketch, and cartoon, and
7 classes. We select one domain as the source domain and
the other three as the target domains.

We compare our approach against several state-of-the-
art methods 1 using seven variants. For fair comparison

1In Tabs. 1 and 2 we highlight the previous best model in gray, variants

with RandConv [24], we use ABA1-layer, i.e. ABA with a
1-layer Bayesian convolutional neural network. To match
the number of convolutional layers in ALT [7], we use
ABA5-layer, i.e. ABA with a 5-layer Bayesian convolutional
neural network. In the variants ABA5-layer+RandConv and
ABA5-layer+Augmix, the second augmented image is generated
by RandConv or Augmix instead of Bayesian inference.

Results.
For Digits dataset, Table 1 shows that pixel-level ad-

versarial perturbation methods such as ADA and M-ADA,
and the composition of image augmentation method like
Augmix, only marginally improve SSDG performance,
while AdvBNN even downgrades the performance. How-
ever, convolutional-based augmentations, even with just one
layer, can significantly enhance performance. Among the
1-layer convolutional augmentations, ALT do not perform
better than RandConv. However, our 1-layer ABA outper-
forms both. A 5-layer ABA performs better than 1-layer
ABA and adding a RandConv or Augmix module can fur-
ther improve performance. We achieve state-of-art results
by 3-layer ABA with RandConv to 76.72%.

Our experiments on the PACS dataset are summarized
in Table 2. As PACS contains images with different
styles, methods such as SagNet and RandConv that preserve
shape and texture information can improve performance.
In comparison, JiGen and ADA only marginally improve
accuracy, while AdvBNN downgrades the performance.
Similarly to the Digits dataset, leveraging convolutional-
based augmentations provides significant performance im-
provements, with four variants of ALT performing better
than other baseline models. However, our proposed ABA
method outperforms ALT on both 1-layer and 5-layer cases.
The addition of RandConv or Augmix modules does not
yield further performance improvement, but it still outper-
forms the corresponding ALT models, respectively. We
achieve the state-of-art results by 3-layer ABA, with an ac-
curacy of 66.36%. We show the qualitative results of aug-
mented images by RandConv, ALT and ABA in Figure 2.

4. Conclusion

In this paper, we demonstrate how adversarial learning
combined with Bayesian convolutional neural network can
generate more diverse samples, leading to an improvement
in the performance of image classifiers on the single-source
domain generalization task. Our method, ABA, outper-
forms all existing methods on style shift. The promising
results from this work spark potential future research, such
as exploring whether the Bayesian neural network as a fea-
ture extractor can improve SSDG.

of ABA better than the previous best in blue, and the best accuracy in bold.
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