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Abstract

The remarkable generative capabilities of denoising dif-
fusion models have raised new concerns regarding the au-
thenticity of the images we see every day on the Internet.
However, the vast majority of existing deepfake detection
models are tested against previous generative approaches
(e.g. GAN) and usually provide only a “fake” or “real” la-
bel per image. We believe a more informative output would
be to augment the per-image label with a localization map
indicating which regions of the input have been manipu-
lated. To this end, we frame this task as a weakly-supervised
localisation problem and identify three main categories of
methods (based on either explanations, local scores or at-
tention), which we compare on an equal footing by using
the Xception network as the common backbone architecture.
We provide a careful analysis of all the main factors that
parameterize the design space: choice of method, type of
supervision, dataset and generator used in the creation of
manipulated images; our study is enabled by constructing
datasets in which only one of the components is varied. Our
results show that weakly-supervised localisation is attain-
able, with the best performing detection method (based on
local scores) being less sensitive to the looser supervision
than to dataset mismatch.

1. Introduction
Image generation is improving by the day and it is ar-

guably past the point where it is possible to perceptually
distinguish between generated (fake) and real content. Gener-
ative adversarial models (GAN) [15], normalizing flows [40],
denoising diffusion probabilistic models (DDPM) [48]—all
provide excellent means for the creation of digital art or
entertainment content. However, the advances in image
generation come at the cost of also easing malicious use,
e.g., by altering reality or spreading misinformation. To
counter these harmful effects, deepfake detection methods
are developed to discriminate between fake and real samples
[37, 38, 49].

Among the classes of generative models, diffusion mod-

els are emerging as the dominant paradigm [10], showcasing
impressive results on a wide array of tasks including text-
controlled image generation [39, 45, 42, 54] or image-to-
image translation [44, 42, 32, 54]. Prior work on deepfake
detection has naturally mostly considered detecting content
generated by GANs [50, 16, 35, 53, 4], however the com-
puter vision community is now starting to consider DDPMs
[41, 7]. In this paper, we continue this direction, going
one step further to address the task of weakly-supervised
deepfake localization.

First, we extend prior approaches to localise the manipu-
lated area and not only label the entire image as fake or real.
The binary output of the typical deepfake detection methods
provides only coarse and opaque information, especially in
the frequent case of local manipulations and forgeries. Sec-
ond, in contrast to prior work, which addresses localization
in a fully-supervised setting [29, 56, 51, 22], we consider a
weakly-supervised scenario, where we assume that we only
have access to image-level labels and the models are not
explicitly trained for localization.

Our work brings the following contributions: 1. We pro-
pose a weakly-supervised framework for deepfake local-
ization in images that allows to systematically uncover the
importance of various factors (model, supervision type,
dataset) in the context of weakly-supervised localization
of face manipulations. 2. We generate a detailed dataset
with locally and fully manipulated images that allows dis-
entanglement of different factors in deepfake manipulation
localization. 3. We provide extensive quantitative and
qualitative results as response to fundamental questions
in understanding the factors determining the performance
of weakly-supervised manipulation detection models. Our
analysis provides insights about the models’ sensitivity to
looser supervision and dataset mismatch.

2. Related Work

Deepfake detection of DDPM content. Naturally, there is
a vast body of work dedicated to the detection of GAN-
generated images [49, 37, 33, 38]. However, the deep
fake detection community has recently started considering



diffusion-generated images: for example, preliminary works
use high-level cues such as inconsistencies in lighting [13]
or perspective distortion [14], but end-to-end detection net-
works were also tested [41, 7]. The later focused on the
transferability across classes of generative models (from
GAN to DDPM, and vice versa), with the prevailing obser-
vation being that detectors do not generalize well across the
two types of generators.

Local manipulations. A common setup in deepfake cre-
ation is altering a person’s face by reenactment, replacement,
editing or synthesis using techniques known as face swap,
face transfer, facial attribute manipulations or inpainting [37].
These approaches result in local manipulations and are tradi-
tionally GAN-based. Increasingly larger and more complex
datasets and challenges have emerged [43, 24, 30, 11, 27, 21]
and, with these, a considerable effort has been made to ex-
pose those types of fakes [12, 33, 19, 1, 3, 55]. However,
localizing manipulations has arguably received less attention
than detecting whether an image is fake or not. Works that
tackle localization rely on local noise fingerprint patterns
[56, 29, 17, 34], attention mechanisms [8, 9, 36] or self-
consistency checks [23, 2]. Very recent concurrent works
proposed a forensic framework for general manipulation lo-
calization [17] and a hierarchical fine-grained formulation
for image forgery detection [18]. Similar to us they consider
diffusion-generated data with local forgeries, but differently
they assumed full supervision.

3. Methodology

3.1. Methods for detection and localization

The task of deepfake detection consists of predicting
whether an image is either real or fake. This task is usually
framed as a binary classification problem and it is addressed
using standard classification networks. In this paper we are
interested in evaluating the capabilities of such methods in a
weakly-supervised setting: if we assume only image-level
labels, can these classifiers be successfully used for localiza-
tion of partially manipulated images?

We identify and investigate three categories of approaches
suitable for weakly-supervised localisation. These methods
are based either on explanations (GradCam), local scores
(Patches) or attention (Attention) (for visual depic-
tions see Figure 1).

GradCam. While GradCAM explanations were previously
used in the deepfake detection literature [55, 47, 52], they
were mostly shown as qualitative results and were not eval-
uated quantitatvely, in terms of how well they localize the
input alterations. In this paper we aim to quantify their per-
formance and contrast them with other weakly-supervised lo-
calization methods. Concretely, we endow the Xception [6]
network with localization capabilities by applying Grad-
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Figure 1. Overview of the three types of approaches proposed
for the detection and localization of deepfakes. Each method is
able to produce a fakeness score (for detection) and a mask (for
localization); the mask is obtained either explicitly (for the first
model) or implicitly (for the second and third models).

CAM [46] on the activations produced by block no. 12, the
one before the last downsampling operation.

Patches. We use Patch–Forensics[4], which is a truncated
classification network: it takes the feature activations after
several layers and projects them to a patch-level score using
1 × 1 convolutions. At train time the loss is computed for
each patch, while at test time, we average the per-patch soft-
max predictions to produce an image-level detection score.
The authors experiment with two backbones (Xception [6]
and ResNet [20]) and vary the depth of the selected trunk.
We choose the Xception backbone truncated after the second
block of layers, as this combination yielded good perfor-
mance in the original work.

Attention. We start from [8], which augments an Xcep-
tion [6] backbone with a learned attention mask to aggregate
internal feature maps. The attention mask is used for locali-
sation. To stabilize training, we replace the L1 loss with the
binary cross-entropy loss (CE). Our final loss is

L = CE(y, ŷ) + λCE(y,max m̂), (1)

where y is the true image label, ŷ is the predicted fake-
ness score, m̂ is the estimated localization mask, and λ is a
term that balances the two losses and is set through cross-
validation.



Num. images

Type Generation Model Dataset Train Test Val

Full Diffusion P2 CelebA-HQ 9K – 1K
Full Diffusion P2 FFHQ 9K – 1K

Local Diffusion P2–Repaint CelebA-HQ 30K 8.5K 3K
Local Diffusion P2–Repaint FFHQ 30K – 3K

Table 1. Details of our proposed dataset with locally manipulated
images and fully generated ones.

3.2. Datasets

To train and evaluate our models, we use real images
and two types of fake images: fully synthesized and locally
manipulated images.

Real data. We use two face datasets containing high-quality
images: CelebA-HQ and FFHQ. CelebA-HQ [25] consists
of 30K images that were selected and processed from the
CelebA dataset [31]; we keep the original splits for training,
validation and testing. FFHQ [26] consists of 70K images
that have been crawled from Flickr and were automatically
aligned and cropped.

Fake data: Full-image synthesis. We use the perception-
prioritized (P2) diffusion method of Choi et al. [5] to sample
fully-synthetic images. For both datasets we sample 10K
images (9K for training and 1K images for validation). We
refer to these datasets as P2/CelebA-HQ and P2/FFHQ, re-
spectively.

Fake data: Local manipulations. We generate two lo-
cally inpainted datasets using the Repaint method [32]
on the CelebA-HQ and FFHQ datasets. Since Repaint
works on top of a pretrained full-image diffusion model,
we use the pretrained P2 models, trained on CelebA-HQ
and FFHQ, respectively. We refer to the resulting datasets
as P2–Repaint/CelebA-HQ and P2–Repaint/FFHQ. The in-
painted regions correspond to various face attributes (skin,
hair, eyes, mouth, nose, glasses). For P2–Repaint/CelebA-
HQ these annotations were manually labeled [25], while for
P2–Repaint/FFHQ these are obtained using a pretrained face
segmentation method [28]. Given an image (corresponding
to the identity of a person) we generate multiple inpaintings
by randomly sampling masks corresponding to these face
attributes. For smaller parts (eyes, mouth, nose), we dilate
the masks with a kernel of random size, up to 15 pixels. The
masks occupy on average 18.3% of the image surface.

4. Experiments

Our experiments evaluate the proposed methods with dif-
ferent levels of supervision, gradually changing the dataset
and the generators in order to quantify their importance in
manipulation localization. We investigate the performance

using three levels of supervision:

• Setup A (label & full) is a weakly-supervised setup
in which we have access to fully-generated images as
fakes and, consequently, only image-level labels.

• Setup B (label & partial) is a weakly-supervised setup
in which we have access to partially-manipulated im-
ages, but only with image-level labels (no localization
information). This means that while an image may be
labelled as “fake”, not all of its regions are fake.

• Setup C (mask & partial) is a fully-supervised setting,
in which we have access to ground-truth localization
masks of partially-manipulated images.

All reported results are evaluated on the P2–
Repaint/CelebA-HQ dataset. For localisation we
measure intersection over union (IoU) and pixel-wise
binary classification accuracy (PBCA), using a binarization
threshold of 0.5 on the predicted localisation masks. We
also measure image-level detection in terms of average
precision (AP); for this setting we also use real images from
the CelebA-HQ test set.

4.1. Quantifying the localization abilities

What type of localization approach is better for detecting
local manipulations? To answer this question we evaluate
all three proposed approaches for manipulation localization
in the three setups described above. To exclude other factors
of variation we maintain the image generator and the source
dataset fixed, that is for scenario A we train on P2/CelebA-
HQ while for scenario B and C we use P2–Repaint/CelebA-
HQ. Real data from CelebA-HQ is used in both scenario
A and B; for the scenario C (fully supervised), real data is
not needed. Results for both detection and localization are
shown in Table 2. Among the three methods, the Patches
method shows the best performance across all settings. How-
ever, as the training conditions progressively match those of
testing, there is an improvement in IoU for all three meth-
ods, all converging to a very strong performance in the fully
supervised scenario, C. This result confirms that deepfake
detection models work very well in-domain, but their perfor-
mance degrades when there is a mismatch between training
and testing.

Are localizations qualitatively different across methods?
Figure 2 shows examples of the localization maps produced
by our three detection methods in three previously introduced
scenarios. We notice that Patches, is able to partially
recover the manipulated areas even in the initial setup, A, and
improves considerably in the subsequent ones. GradCam
and Attention both struggle in scenarios A and B, but
their outputs are different: the former seems to produce
weaker activations, which are also spread through irrelevant



IoU (%) PBCA (%) AP (%)
sup. generator GC PT AT GC PT AT GC PT AT

A label full 16.8 64.9 9.7 83.1 96.7 83.4 67.3 95.3 79.3
B label partial 21.5 37.7 23.2 85.1 79.8 86.3 94.4 95.3 94.4
C mask partial 83.7 84.5 70.3 96.8 98.7 97.6 – – –

Table 2. Evaluation of the three proposed localization techniques
(GradCam GC, Patches PT, Attention AT) using different
levels of supervision: image-level label on full images (A), image-
level label on locally manipulated images (B) and fully-supervised
masks (C). The generator is P2 and the dataset is CelebA-HQ. We
evaluate both localization (using IoU and PBCA) and detection
(using AP). Patches systematically outperforms the other two
methods under all metrics and all scenarios.

CelebA-HQ FFHQ
sup. generator IoU PBCA AP IoU PBCA AP

A label full 64.9 96.7 97.0 25.1 88.9 84.4
B label partial 37.7 86.3 95.3 23.3 64.4 75.2
C mask partial 84.5 98.7 – 32.3 89.2 –

Table 3. Evaluation of Patches on the Repaint/CelebA-HQ
dataset using two training datasets: CelebA-HQ and FFHQ. When
the source dataset does not match the target dataset, we observe a
consistent drop in performance across all scenarios. This is more
evident in scenario B where only image-level supervision is avail-
able for locally-manipulated images.

real inpainted mask real inpainted mask

GC PT AT GC PT AT

A

B

C

Figure 2. Soft localization maps produced by the three proposed
approaches using different level of supervision. Patches (PT)
can accurately detect the manipulations after having seen only fully
generated fake images (scenario A) or locally-inpainted images with
only image-level supervision (scenario B). Both Attention (AT)
and GradCam (GC) struggle in scenarios A and B. All methods
recover the manipulated region in the fully supervised scenario,
C. This suggests that operating at a patch level is better suited
for recovering local manipulations than either using GradCam or
attention.

areas of the image (this effect is more pronounced in scenario
A), while the latter one does not detect any manipulations
(scenario A) or outputs coarse manipulations (scenario B).

What is the expected localization performance when
training and testing datasets are different? To answer
this question we designed an experiment in which the train-
ing and testing data come from different source datasets,
while keeping the generator, the method and the level of
supervision the same. Quantitative results are shown in Ta-
ble 3 for all scenarios under both localization and detection
metrics. There is a consistent drop in performance across
all scenarios and metrics when the dataset for training the
generator is different. A closer look at the soft localization
maps reveals a more complete picture (Figure 3): when train-
ing on FFHQ, the predictions overlap with the ground-truth
even for small regions (nose and mouth), but they are less
certain on the boundaries and the masks appear eroded or
with holes.
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CelebA FFHQ CelebA FFHQ CelebA FFHQ
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Figure 3. Soft localization maps when using the same and different
source datasets for training and testing. For training we use data
derived form either CelebA-HQ or FFHQ, while for testing we
use data derived from CelebaA-HQ. If training and testing source
datasets differe, then the produced maps become less sharp and
eroded, especially in the weakly-supervised scenarios, A and B.

5. Conclusions
In this paper, we presented a first look at weakly-

supervised localization in the context of diffusion-generated
images of faces. We proposed a framework and a dataset that
allows to systematically explore the importance of different
factors in model performance, such as: choice of detection
method, level of supervision, dataset and type of generator
used. We summarize our findings: 1. The detection of local
manipulations can be performed weakly supervised, even in
the most restrictive scenarios. 2. The patch-based method
consistently outperforms the other two approaches (expla-
nations or attention) across multiple settings and metrics.
3. The detection performance in one of the weakly-super-
vised settings (image label, partial manipulations) is strong
across all detection methods, suggesting that partially-manip-
ulated images can be used for training deepfake classifiers.
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